Process Economics Program

Report 148B
Synthesis Gas Production from Natural Gas Reforming

By Syed N. Naqvi
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Abstract

This Process Economics Program (PEP) report presents an update on the subject of synthesis gas production from natural gas. A previous PEP report on this subject (PEP Report 148A) was published in November 1990.

The evaluation scheme selected for this report is based on a broader line of technologies as compared to the previous report which presented comparatively fewer choices of technologies commercially available at that time. The analysis format is also different from the one used in that report. For this report, we categorized the syngas technologies in three main divisions according to the end use of the gas. Three areas of syngas end uses were chosen: 1) hydrogen, 2) methanol, and 3) Fischer-Tropsch products.

Then, another subdivision was made according to the type of reforming used to produce the syngas for the above end-use products. Four types of reforming processes are evaluated. They are: steam methane reforming (syngas for hydrogen and methanol); combined reforming (syngas for methanol); autothermal reforming (syngas for Fischer-Tropsch products); and partial oxidation (syngas for Fischer-Tropsch products). And then in a final classification, for a given combination of reforming methodology and targeted syngas end use, processes are presented according to the technology licensors.

A detailed technical review of the current R&D work on natural gas reforming is also presented in a separate chapter.

In all, eight reforming technologies are presented. Two are for syngas production for hydrogen (Uhde and Praxair), four illustrate syngas production for methanol (Lurgi, Haldor Topsoe, Johnson Matthey/Davy, and Toyo), and two processes show syngas production for the Fischer-Tropsch process (Haldor Topsoe and Shell).

The design and process configurations for the above technologies are of a conceptual nature and basic data for them were extracted from patents, technical articles, and company brochures available within the domain of public information. PEP internal information sources, which are generally based on talks with the licensors/producers, have also been used.

Our analysis indicates that Uhde and Praxair steam methane reforming-based syngas technologies stand very close in terms of capital investment and production costs. In the combined-reforming technologies class, Johnson Matthey/Davy seems to have a significant economic edge over Lurgi and Topsoe. Toyo’s steam methane reforming (SMR) syngas technology (for methanol) has the highest production cost but if extra hydrogen present in the syngas is extracted and an economic credit is taken for it, the process economics for syngas are improved. Shell partial oxidation also shows a sizeable economic advantage over the Topsoe autothermal technology in syngas generation for the Fischer-Tropsch process.

Our report provides insight into syngas plant process economics and can be used as a tool for cost estimation for different syngas plant capacities. The report is highly beneficial for those planners/producers looking at products downstream from the syngas especially now that the focus on chemicals manufacturing is shifting to the United States with the development of cheap shale gas and while China is expanding its chemicals production plans based on coal. Another PEP report (PEP Report 148C, to be published in 2013) covers syngas production from coal.
Contents

1. Introduction .. 1-1
2. Summary .. 2-1
 Syngas main products ... 2-1
 Feedstocks ... 2-2
 Reforming technologies .. 2-2
 Steam methane reforming ... 2-3
 Partial oxidation (non-catalytic) ... 2-4
 Partial oxidation (catalytic) .. 2-5
 Autothermal reforming ... 2-6
 Combined SMR/POX reforming ... 2-7
 Gas-heated reforming .. 2-8
 Syngas technologies description .. 2-10
 Syngas production by SMR process—Uhde technology ... 2-11
 Syngas production by SMR process—Praxair technology .. 2-11
 Syngas production by SMR process—Toyo technology ... 2-12
 Syngas production by two-step combined reforming process—Lurgi technology 2-12
 Syngas production by two-step combined reforming process—Topsoe technology 2-13
 Syngas production by two-step combined reforming process—Johnson Matthey/Davy technology ... 2-13
 Syngas production by autothermal reforming process—Topsoe technology 2-14
 Syngas production by partial oxidation process—Shell technology .. 2-14
 Process economics ... 2-15
3. Industry status .. 3-1
 Regional share in syngas production capacity ... 3-1
 Syngas consumption by products .. 3-2
 Syngas production sources ... 3-2
4. Technical review ... 4-1
 Feedstocks ... 4-2
 Natural gas .. 4-2
 Alternate feedstocks .. 4-2
 Reforming technologies .. 4-2
 Steam methane reforming ... 4-3
 Feedstock pretreatment .. 4-3
 Prereforming .. 4-6
 Steam/carbon molar ratio .. 4-6
 Reaction temperature and pressure ... 4-7
 Coke formation ... 4-9
 Catalysts ... 4-10
 Catalyst support ... 4-12
 Steam reformer ... 4-13
Contents (continued)

Carbon dioxide reforming ... 4-15
Partial oxidation (non-catalytic) .. 4-16
Catalytic partial oxidation ... 4-17
Catalysts and catalyst supports ... 4-18
Effect of reformer pressure and temperature ... 4-21
Steam or CO₂ addition in reformer feed ... 4-21
Methane-to-oxygen ratio in feed .. 4-21
Autothermal reforming .. 4-21
Autothermal reforming with CO₂ .. 4-24
Summary features of the main reforming technologies ... 4-26
Combined SMR/POX reforming ... 4-26
Gas-heated reforming .. 4-28
Water-gas shift reaction .. 4-31
High-temperature shift .. 4-31
Catalysts ... 4-31
Catalyst supports .. 4-33
Effect of steam on water gas shift reaction equilibrium .. 4-34
HTS catalysts for sour WGS feedstock ... 4-35
Low-temperature shift .. 4-36
Catalysts for fuel cells applications ... 4-37
LTS catalysts for sour WGS feedstock .. 4-38
Effect of steam-to-carbon ratio ... 4-38

5. Steam reforming ... 5-1
Syngas production by steam methane reforming for hydrogen .. 5-1
SMR process description—syngas production for hydrogen by Uhde process 5-2
Process discussion ... 5-8
Feedstock .. 5-8
Prereforming .. 5-9
Natural gas-steam blending .. 5-9
Reforming .. 5-9
By-product steam/startup steam boiler ... 5-10
Reformer gas shifting .. 5-10
Waste streams .. 5-10
Materials of construction ... 5-11
Cost estimates ... 5-13
Fixed-capital costs ... 5-13
Production costs .. 5-14
SMR process description—syngas production for hydrogen by Praxair process 5-18
Process discussion ... 5-24
Cost estimates ... 5-26
Contents (continued)

Fixed-capital costs ... 5-26
Production costs .. 5-27
Syngas production by steam methane reforming for methanol ... 5-31
SMR process description—Toyo syngas process for methanol production ... 5-33
Process discussion ... 5-37
Feedstock ... 5-37
Prereforming ... 5-37
Natural gas-steam blending ... 5-38
Reforming .. 5-38
Catalyst system ... 5-38
Waste heat recovery .. 5-39
Plant startup boiler .. 5-40
Materials of construction .. 5-40
Cost estimates ... 5-42
Fixed-capital costs ... 5-42
Production costs .. 5-43
6. Combined reforming ... 6-1
Syngas production by combined reforming for methanol ... 6-1
Process description—syngas production for methanol by Lurgi two-stage process 6-1
Process discussion ... 6-6
Feedstock ... 6-6
Natural gas-steam blending ... 6-6
Steam methane reformer ... 6-6
Waste heat recovery .. 6-7
Plant startup boiler .. 6-7
Materials of construction .. 6-7
Cost estimates ... 6-9
Fixed-capital costs ... 6-9
Production costs .. 6-10
Process description—syngas production for methanol by Haldor-Topsoe two-stage process 6-14
Process discussion ... 6-19
Feedstock ... 6-19
Natural gas-steam blending ... 6-19
Steam methane reformer ... 6-19
Waste heat recovery .. 6-20
Plant startup boiler .. 6-20
Materials of construction .. 6-20
Cost estimates ... 6-22
Fixed-capital costs ... 6-22
Production costs .. 6-23
Contents (continued)

7. Autothermal reforming .. 7-1
 Syngas production by autothermal reforming process for GTL products 7-1
 ATR process description—syngas production for F-T products (Haldor-Topsoe autothermal
 process) ... 7-2
 Process discussion .. 7-6
 Feedstock .. 7-6
 Natural gas-steam blending ... 7-6
 Waste heat recovery .. 7-6
 Plant startup boiler ... 7-7
 Materials of construction ... 7-7
 Cost estimates .. 7-9
 Fixed-capital costs .. 7-9
 Production costs ... 7-10
8. Partial oxidation .. 8-1
 Syngas production by partial oxidation process for GTL products 8-1
 POX process description—syngas production for F-T products (Shell POX process) 8-2
 Process discussion .. 8-5
 Feedstock .. 8-5
 Waste heat recovery ... 8-5
 Plant startup boiler .. 8-5
 Materials of construction ... 8-5
 Cost estimates .. 8-7
 Fixed-capital costs .. 8-7
 Production costs ... 8-8

Appendix A: Patent summary tables ... A-1
Appendix B: Design and cost bases ... B-1
Appendix C: Cited references ... C-1
Appendix D: Patent references by company .. D-1
Contents (concluded)

Appendix E: Process flow diagrams ... E-1
Figures

2.1 Main syngas sources and derivative chemical products ... 2-2
2.2 Schematic drawing of Johnson Matthey/Davy gas-heated reformer ... 2-9
2.3 Schematic drawing of Haldor Topsoe convective reformer ... 2-10
2.4 Schematic drawing of Haldor Topsoe exchange reformer .. 2-10
2.5 Syngas composition range from different syngas technologies .. 2-15
3.1 Global syngas production capacity and status as of 2010 by product .. 3-2
3.2 Global syngas production capacity and status as of 2010 by feedstock 3-3
4.1 Equilibrium methane conversion as a function of temperature, pressure, and steam/carbon ratio .. 4-8
4.2 Syngas composition from different reforming processes .. 4-8
4.3 Basic types of stream methan reformers .. 4-14
4.4 Equilibrium mole fractions of syngas products as a function of reforming temperature 4-19
4.5 Adiabatic outlet temperature of syngas dependence on inlet preheat temperature 4-20
4.6 H₂ selectivity, CO selectivity, and methane conversion as a function of inlet preheat temperature .. 4-20
4.7 Schematic diagram of ATR reactor ... 4-22
4.8 Calculated thermodynamic results of ATR with CO₂ recycle .. 4-23
4.9 Effect of steam-to-methane and oxygen-to-methane ratios on syngas composition in ATR 4-23
4.10 Equilibrium methane conversion as a function of feed composition at different temperatures ... 4-25
4.11 Equilibrium CO₂ conversion as a function of feed composition at different temperatures 4-25
4.12 Equilibrium H₂/CO ratio in syngas as function of feed composition at different temperatures 4-26
4.13 Schematic drawing of Johnson Matthey/Davy gas-heated reformer .. 4-29
4.14 Schematic drawing of Haldor Topsoe convective reformer ... 4-30
4.15 Schematic drawing of Haldor Topsoe exchange reformer .. 4-30
4.16 Schematic drawing of Haldor Topsoe convective reformer HTCR Twin™ 4-31
4.17 Equilibrium composition of shifted gas as a function of temperature (steam-to-CO ratio = 1:1) ... 4-34
4.18 Equilibrium composition of shifted gas as a function of temperature (steam-to-CO ratio = 2:1). ... 4-35
5.1 Syngas production by steam methane reforming for hydrogen by Uhde process E-3
5.2 Effect of NG price on production costs and product value of syngas for hydrogen by Uhde process .. 5-18
5.3 Effect of return-on-investment rates on the product value of syngas for hydrogen by Uhde process ... 5-18
5.4 Syngas production by steam methane reforming for hydrogen by Praxair process E-5
5.5 Effect of NG price on production costs and product value of syngas for hydrogen by Praxair process .. 5-31
5.6 Effect of return-on-investment rates on the product value of syngas for hydrogen by Praxair process .. 5-31
5.7 Syngas production by steam methane reforming for methanol by Toyo process E-7
5.8 Effect of NG price on production costs and product value of syngas for methanol production by Toyo process ... 5-47
Figures (concluded)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Effect of return-on-investment rates on the product value of syngas for methanol production by Toyo process</td>
</tr>
<tr>
<td>6.1</td>
<td>Syngas production for methanol by Lurgi two-stage process</td>
</tr>
<tr>
<td>6.2</td>
<td>Effect of NG price on production costs and product value of syngas for methanol production by Lurgi two-stage process</td>
</tr>
<tr>
<td>6.3</td>
<td>Effect of return-on-investment rates on the product value of syngas for methanol production by Lurgi two-stage process</td>
</tr>
<tr>
<td>6.4</td>
<td>Syngas production for methanol by Haldor-Topsoe two-stage process</td>
</tr>
<tr>
<td>6.5</td>
<td>Effect of NG price on production costs and product value of syngas for methanol production by Haldor-Topsoe two-stage process</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of return-on-investment rates on the product value of syngas for methanol production by Haldor-Topsoe two-stage process</td>
</tr>
<tr>
<td>6.7</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
</tr>
<tr>
<td>6.8</td>
<td>Effect of NG price on production costs and product value of syngas for methanol production by Johnson Matthey/Davy two-stage process</td>
</tr>
<tr>
<td>6.9</td>
<td>Effect of return-on-investment rates on the product value of syngas for methanol production by Johnson Matthey/Davy two-stage process</td>
</tr>
<tr>
<td>7.1</td>
<td>Syngas production for F-T product by Topsoe autothermal process</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of NG price on production costs and product value of syngas for F-T products (naphtha, kerosene, and diesel) production by Topsoe autothermal process</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of return-on-investment rates on the product value of syngas for F-T products (naphtha, kerosene, and diesel) production by Topsoe autothermal process</td>
</tr>
<tr>
<td>8.1</td>
<td>Syngas production for F-T product by Shell partial oxidation process</td>
</tr>
<tr>
<td>8.2</td>
<td>Effect of NG price on production costs and product value of syngas for F-T products (naphtha, kerosene, and diesel) production by Shell partial oxidation process</td>
</tr>
<tr>
<td>8.3</td>
<td>Effect of return-on-investment rates on the product value of syngas for F-T products (naphtha, kerosene, and diesel) production by Shell partial oxidation process</td>
</tr>
</tbody>
</table>
Tables

2.1 Syngas production by steam methane reforming for hydrogen
 Total capital investment .. 2-17
2.2 Syngas production by steam methane reforming for hydrogen
 Production costs... 2-18
2.3 Syngas production by two-step combined reforming for methanol
 Total capital investment .. 2-19
2.4 Syngas production by two-step combined reforming for methanol
 Production costs... 2-20
2.5 Syngas production by Topsoe autothermal and Shell partial oxidation processes for F-T products
 Total capital investment .. 2-21
2.6 Syngas production by Topsoe autothermal and Shell partial oxidation processes for F-T products
 Production costs... 2-22
2.7 Syngas production by steam methane reforming for methanol by Toyo process
 Total capital investment .. 2-23
2.8 Syngas production by steam methane reforming for methanol by Toyo process
 Production costs... 2-24
2.9 Toyo SMR-based syngas technology versus other two-step combined reforming technologies
 Total fixed costs .. 2-25
2.10 Toyo SMR-based syngas technology versus other two-step combined reforming technologies
 Production costs... 2-25
2.11 Carbon footprint for different natural gas-based syngas technologies .. 2-26
3.1 Summary of the gasification industry.. 3-3
3.2 NG-based operating syngas projects listing (as of 2013) ... 3-4
3.3 NG-based announced syngas projects (as of 2013) ... 3-5
3.4 NG-based announced fertilizers projects (as of 2013) .. 3-7
4.1 Physical properties of KATALCO 41-6T brand hydrogenation catalyst .. 4-4
4.2 Physical properties of KATALCO 61-1T brand hydrogenation catalyst .. 4-4
4.3 Physical properties of TK-250 brand hydrogenation catalyst ... 4-5
4.4 Physical properties of KATALCO 57-4 brand SMR catalyst (JM)... 4-11
4.5 Physical properties of RK-200 series SMR catalysts (HT) .. 4-11
4.6 Physical properties of R-67-7H SMR catalyst (HT) .. 4-12
4.7 Technical features of main reforming technologies .. 4-26
4.8 Comparison of process technologies for syngas generation used in GTL processing................... 4-27
5.1 Syngas production by steam methane reforming for hydrogen by Uhde process
 Design bases.. 5-5
5.2 Syngas production by steam methane reforming for hydrogen by Uhde process
 Stream flows.. 5-7
5.3 Syngas production by steam methane reforming for hydrogen by Uhde process
 Major equipment ... 5-12
5.4 Syngas production by steam methane reforming for hydrogen by Uhde process
 Utilities summary .. 5-13
Tables (continued)

5.5 Syngas production by steam methane reforming for hydrogen by Uhde process
Total capital investment .. 5-15
5.6 Syngas production by steam methane reforming for hydrogen by Uhde process
Production costs... 5-16
5.7 Syngas production by steam methane reforming for hydrogen by Praxair process
Design bases .. 5-21
5.8 Syngas production by steam methane reforming for hydrogen by Praxair process
Stream flows .. 5-23
5.9 Syngas production by steam methane reforming for hydrogen by Praxair process
Major equipment ... 5-25
5.10 Syngas production by steam methane reforming for hydrogen by Praxair process
Utilities summary .. 5-26
5.11 Syngas production by steam methane reforming for hydrogen by Praxair process
Total capital investment .. 5-28
5.12 Syngas production by steam methane reforming for hydrogen by Praxair process
Production costs... 5-29
5.13 Syngas production by steam methane reforming for methanol by Toyo process
Design bases and assumptions... 5-35
5.14 Syngas production by steam methane reforming for methanol by Toyo process
Stream flows .. 5-36
5.15 Syngas production by steam methane reforming for methanol by Toyo process
Major equipment ... 5-41
5.16 Syngas production by steam methane reforming for methanol by Toyo process
Utilities summary .. 5-42
5.17 Syngas production by steam methane reforming for methanol by Toyo process
Total capital investment .. 5-44
5.18 Syngas production by steam methane reforming for methanol by Toyo process
Production costs... 5-45
6.1 Syngas production for methanol by Lurgi two-stage process
Design bases and assumptions ... 6-4
6.2 Syngas production for methanol by Lurgi two-stage process
Stream flows .. 6-5
6.3 Syngas production for methanol by Lurgi two-stage process
Major equipment ... 6-8
6.4 Syngas production for methanol by Lurgi two-stage process
Utilities summary .. 6-9
6.5 Syngas production for methanol by Lurgi two-stage process
Total capital investment .. 6-11
6.6 Syngas production for methanol by Lurgi two-stage process
Production costs... 6-12
6.7 Syngas production for methanol by Haldor-Topsoe two-stage process
Design bases and assumptions ... 6-17
6.8 Syngas production for methanol by Haldor-Topsoe two-stage process
Stream flows .. 6-18
Tables (concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>Syngas production for methanol by Haldor-Topsoe two-stage process</td>
<td>6-21</td>
</tr>
<tr>
<td></td>
<td>Major equipment</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>Syngas production for methanol by Haldor-Topsoe two-stage process</td>
<td>6-22</td>
</tr>
<tr>
<td></td>
<td>Utilities summary</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>Syngas production for methanol by Haldor-Topsoe two-stage process</td>
<td>6-24</td>
</tr>
<tr>
<td></td>
<td>Total capital investment</td>
<td></td>
</tr>
<tr>
<td>6.12</td>
<td>Syngas production for methanol by Haldor-Topsoe two-stage process</td>
<td>6-25</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-30</td>
</tr>
<tr>
<td></td>
<td>Design bases and assumptions</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-31</td>
</tr>
<tr>
<td></td>
<td>Stream flows</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-34</td>
</tr>
<tr>
<td></td>
<td>Major equipment</td>
<td></td>
</tr>
<tr>
<td>6.16</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-35</td>
</tr>
<tr>
<td></td>
<td>Utilities summary</td>
<td></td>
</tr>
<tr>
<td>6.17</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-37</td>
</tr>
<tr>
<td></td>
<td>Total capital investment</td>
<td></td>
</tr>
<tr>
<td>6.18</td>
<td>Syngas production for methanol by Johnson Matthey/Davy two-stage process</td>
<td>6-38</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-4</td>
</tr>
<tr>
<td></td>
<td>Design bases and assumptions</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-5</td>
</tr>
<tr>
<td></td>
<td>Stream flows</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>Major equipment</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-9</td>
</tr>
<tr>
<td></td>
<td>Utilities summary</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-11</td>
</tr>
<tr>
<td></td>
<td>Total capital investment</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Syngas production for F-T products by Topsoe autothermal process</td>
<td>7-12</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-3</td>
</tr>
<tr>
<td></td>
<td>Design bases and assumptions</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td>Stream flows</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-6</td>
</tr>
<tr>
<td></td>
<td>Major equipment</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-7</td>
</tr>
<tr>
<td></td>
<td>Utilities summary</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>Total capital investment</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Syngas production for F-T products by Shell partial oxidation process</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>Production costs</td>
<td></td>
</tr>
</tbody>
</table>