PEP Review 2016-08

Chemical Value Chain Production Economics

Jamie Lacson, Principal Analyst

Abstract

In the global chemical industry, the manufacturing of thousands of chemical products can be divided into eight major value chains:

1. C1 chemicals based on syngas, including methanol and ammonia-derived chemicals
2. C2 chemicals based on ethylene
3. C3 chemical based on propylene
4. C4 based chemicals, including butadiene and isobutylene
5. Benzene-based chemicals
6. Toluene-based chemicals
7. Xylene-based chemicals
8. Chlor-alkali–based chemicals

Each value chain can start from one or more basic feedstocks, such as natural gas (including natural gas liquids, or NGLs), crude oil (through naphtha), coal, salt (for the chlor-alkali industry), and biomass. Major chemical value chains are illustrated in the introduction.

To produce a downstream chemical—taking polypropylene from the C3 value chain, for example—a producer can start from propylene purchased from the market or choose to integrate with propylene production from different feedstocks, such as naphtha (through steam cracking), propane (by dehydrogenation), or methanol (through methanol-to-propylene processes). Methanol, in turn, can be produced by natural gas reforming or coal gasification. A polypropylene producer is constantly facing the question whether it is better to operate a stand-alone or an integrated plant. If the latter, then which basic feedstock should be chosen? The answers depend on the comparative economics (production costs and capital investment costs) of a stand-alone versus an integrated plant to different basic feedstocks.

Traditionally, the IHS Chemical Process Economics Program (PEP) analyzes production economics based on a stand-alone plant by comparing competing processes. At this time, the PEP database contains the production economics of about 1,600 processes. In this review, we start to develop a methodology to connect production economics of individual processes along the value chain. This methodology provides a foundation for developing value chain production economics for a wide range of downstream chemicals in the next several years.

To establish this methodology, we chose two examples—the production of polypropylene (PP) back-integrated to coal, and low-density polyethylene (LDPE) back-integrated to ethane. The production economics of the integrated PP and LDPE plants are compared with a respective stand-alone plant based on second quarter 2016 (PEP Cost Index = 1089) feedstock, raw material, and utility prices. We further impart the price history of the feedstocks, raw materials, and utilities to present the effect of price fluctuation on the comparative economics of integrated plants versus a stand-alone plant in an iPEP™ Spectra data module.
Contents

1 Introduction
Sources of basic petrochemicals
Coal
Crude oil
Natural gas
Natural gas liquids
Chemical value chain
Industry trends/market drivers

2 Summary

3 Polypropylene impact copolymer product value chain
Polypropylene ICP from coal via GE Quench, Lurgi MTP®, and UNIPOL™ process
Process description
Methodology
Sample calculations
Capital costs
Raw materials and by-products
Utilities
Polypropylene ICP from methanol via Lurgi MTP® and UNIPOL™ process
Polypropylene ICP from natural gas via Lurgi MTP® and UNIPOL™ process

4 Low-density polyethylene product value chain
LDPE from 100% ethane via high-pressure tubular process (SABTEC)
Process description
Methodology
Sample calculations
Capital costs
Raw materials and by-products
Utilities
LDPE from 100% naphtha via high-pressure tubular process (SABTEC)
Limitations

Appendix A—Cited references
Appendix B—Production cost bases

Tables
Table 2.1 Polypropylene ICP production costs chain—China
Table 2.2 LDPE production costs chain—USGC
Table 3.1 Polypropylene ICP value chain processes
Table 3.2 Methanol from coal via GE Quench gasification (China)—Variable costs
Table 3.3 Methanol from coal via GE Quench gasification (China)—Production costs
Table 3.4 Methanol-to-propylene by the Lurgi MTP® process (China)—Variable costs
Table 3.5 Methanol-to-propylene by the Lurgi MTP® process (China)—Production costs 30
Table 3.6 Polypropylene ICP production by a fluidized bed gas-phase process similar to UNIPOL™ process (China)—Variable costs 31
Table 3.7 Polypropylene ICP production by a fluidized bed gas-phase process similar to UNIPOL™ process (China)—Production costs 31
Table 3.8 Polypropylene ICP from coal via GE Quench, Lurgi MTP®, and UNIPOL™ process (China)—Variable costs 33
Table 3.9 Polypropylene ICP from coal via GE Quench, Lurgi MTP®, and UNIPOL™ process (China)—Production costs 34
Table 3.10 Polypropylene ICP from methanol via Lurgi MTP® and UNIPOL™ process (China)—Variable costs 41
Table 3.11 Polypropylene ICP from methanol via Lurgi MTP® and UNIPOL™ process (China)—Production costs 42
Table 3.12 Polypropylene ICP from natural gas via Lurgi MTP® and UNIPOL™ process (USGC)—Variable costs 44
Table 3.13 Polypropylene ICP from natural gas via Lurgi MTP® and UNIPOL™ process (USGC)—Production costs 45
Table 3.14 Ethylene from 100% ethane (USGC)—Variable costs 48
Table 3.15 Ethylene from 100% ethane (USGC)—Production costs 48
Table 3.16 LDPE production by a high-pressure tubular process similar to SABTEC CTR® process (USGC)—Variable costs 49
Table 3.17 LDPE production by a high-pressure tubular process similar to SABTEC CTR® process (USGC)—Production costs 49
Table 3.18 LDPE from 100% ethane via high-pressure tubular process (SABTEC) (USGC)—Variable costs 50
Table 3.19 LDPE from 100% ethane via high-pressure tubular process (SABTEC) (USGC)—Production costs 51
Table 3.20 LDPE from wide-range naphtha via high-pressure tubular process (SABTEC) (USGC)—Variable costs 58
Table 3.21 LDPE from wide-range naphtha via high-pressure tubular process (SABTEC) (USGC)—Production costs 59

Figures

Figure 1.1 Petrochemical feedstocks and derivatives 6
Figure 1.2 Fossil fuel supply and demand for primary petrochemicals 7
Figure 1.3 Chlor-alkali value chain 11
Figure 1.4 Ammonia value chain 12
Figure 1.5 Methanol value chain 13
Figure 1.6 Ethylene value chain 14
Figure 1.7 Propylene value chain 15
Figure 1.8 C₄ value chain 16
Figure 1.9 Benzene value chain 17
Figure 1.10 Toluene value chain 18
Figure 1.11 Xylene value chain 19
Figure 2.1 Polypropylene ICP production costs chain—China 22
Figure 2.2 Polypropylene ICP production TFC from coal, methanol, and propylene—China (second quarter 2016) 23
Figure 2.3 Polypropylene ICP historical plant cash cost—China (USD/metric ton) 24
Figure 2.4 LDPE production costs chain—USGC 26
Figure 3.1 Coal-to-polypropylene ICP product value chain 28
Figure 3.2 Polypropylene ICP production costs—China 35
Figure 3.3 Coal-to-polypropylene ICP input and output 36
Figure 3.4 Coal-to-polypropylene ICP value chain 40
Figure 3.5 Methanol-to-polypropylene ICP product value chain 40
Figure 3.6 Polypropylene ICP production costs—China 43
Figure 3.7 Natural gas-to-polypropylene impact copolymer product value chain 43
Figure 3.8 Polypropylene ICP production costs—USGC 46
Figure 4.1 Ethane-to-LDPE product value chain 47
Figure 4.2 Ethane-to-LDPE input and output 52
Figure 4.3 Steam cracker downstream derivatives 53
Figure 4.4 Ethane-to LDPE value chain 56
Figure 4.5 LDPE production costs—USGC 57
Figure 4.6 Naphtha-to-LDPE product value chain 57
Figure 4.7 LDPE production costs—USGC 60
Figure 4.8 Two-step and integrated process simplified diagram 60