Abstract

Hydrogen cyanide, HCN, is used as a chemical intermediate, in the concentration of ores, as a pharmaceutical intermediate, as a fumigant, for case hardening of iron and steel, and in electroplating. In particular, HCN is employed to prepare acrylonitrile, used in production of acrylic fibers, synthetic rubber, and plastics. The high toxicity of HCN makes it subject to regulatory restrictions for transport on public roadways. Hydrogen cyanide is therefore usually consumed at its point of production, although a small proportion is consumed via pipeline transfer “over the fence.”

About half of the HCN produced globally is made on-purpose—from ammonia, natural gas, and oxygen—by ammoxidation using the Andrussow process. A substantial quantity of HCN is produced as a coproduct during manufacture of acrylonitrile by ammoxidation of propylene, particularly in the United States. Lesser quantities of HCN are produced on-purpose from ammonia and natural gas via the BMA (Blausäure, Methan, Ammoniak) process, and by pyrolysis of propane or butane with ammonia via the Fluohmic (Shawinigan) process.

This PEP review focuses on the conventional Andrussow process and the newer BMA process, the main difference in approach being that the former uses oxygen (from air) while the latter does not. Both processes use platinum-based catalysis, and both processes coproduce hydrogen. The Andrussow process has advantages inherent to thermodynamic favorability, while the BMA process has the advantages of higher HCN yield and a relatively pure H₂ offgas stream.

The Andrussow and BMA technologies for HCN production are reviewed, the industry status of HCN is updated, and a summary is provided of the modern processes in terms of comparative economics. Lastly an interactive module is attached, the iPEP Navigator HCN tool, that provides a snapshot of economics for each process and allows the user to select the process, units, and region of interest.

While the processes presented herein are PEP’s independent interpretation of the companies’ patent literature and may not reflect in whole or in part the actual plant configuration, we do believe they are sufficiently representative of plant conceptual process designs.
Contents

1 Summary 6
2 Introduction 8
3 Industry Status 11
 3.1 Major producers of HCN 11
4 Production of Hydrogen Cyanide from Natural Gas, Ammonia, and Oxygen 15
 4.1 Process Description 15
 4.1.1 Process chemistry 15
 4.1.2 Catalyst system 16
 4.1.3 HCN reactor 17
 4.1.4 Reaction gas purification 19
 4.1.5 Materials of construction 20
 4.1.6 Process waste effluents 20
 4.1.7 Process design 20
 4.2 Cost Estimates 24
 4.2.1 Fixed capital costs 25
 4.2.2 Production costs 25
5 Production of Hydrogen Cyanide from Natural Gas and Ammonia 30
 5.1 Process Description 30
 5.1.1 Process chemistry 30
 5.1.2 Catalyst system 30
 5.1.3 HCN reactor 31
 5.1.4 Product separation/recovery 31
 5.1.5 Materials of construction 32
 5.1.6 Process waste effluents 32
 5.1.7 Process design 32
 5.2 Cost Estimates 38
 5.2.1 Fixed capital costs 38
 5.2.2 Production costs 38
6 Process Discussion 43
7 Cited References 44
Figures

Figure 1: Production of HCN by process type
Figure 2: Block flow diagram of the Andrussow HCN process
Figure 3: Block flow diagram of the Degussa BMA HCN process
Figure 4: DuPont HCN reactor (US 2782107)
Figure 5: Evonik HCN reactor design (US 2011171101)
Figure 6: Rohm & Haas HCN reactor design (US 7063827)
Figure 7: Production cost of HCN by the Andrussow process as a function of plant operating level and plant capacity
Figure 8: Production cost of HCN by the Degussa BMA process as a function of plant operating level and plant capacity
Figure A1: Process flow diagram of the Andrussow process for production of HCN
Figure A2: Process flow diagram of the BMA process for production of HCN

Tables

Table 1: Summary of Andrussow and BMA process technologies
Table 2: Physical properties of HCN
Table 3: Major producers of HCN (≥ 20 ktpy capacity, 2012)
Table 4: HCN product yield from Evonik HCN reactor (US 2011171101)
Table 5: Production of HCN by the Andrussow process—Design bases and assumptions
Table 6: Production of HCN by the Andrussow process—Stream flows
Table 7: Production of HCN by the Andrussow process—Major equipment
Table 8: Production of HCN by the Andrussow process—Utilities summary
Table 9: Production of HCN by the Andrussow process—Total capital investment
Table 10: Production of HCN by the Andrussow process—Production costs
Table A1: Production of HCN by the BMA process—Design bases and assumptions
Table A2: Production of HCN by the BMA process—Stream flows
Table A3: Production of HCN by the BMA process—Major equipment
Table A4: Production of HCN by the BMA process—Utilities summary
Table A5: Production of HCN by the BMA process—Total capital investment
Table A6: Production of HCN by the BMA process—Production costs