Polyamide (Nylon) 6 and 66 Process Summary

Dipti Dave, Senior Analyst II

Abstract
Polyamide 6 and 66 (or Nylon 6 and 66) are the most common types of polyamide available commercially. The total volume for the Nylon 6 and 66 polymerization market is 7.2 million tons in 2014, up from 6.4 million tons in 2010. Nylon 6 and 66 polymerization produces either chips or resin in uniform pellets. The chips or resin are further processed into two major applications: fibers or engineering thermoplastics (ETP). The fibers may also be directly produced from the molten state of the polymer, bypassing chip/resin production. The majority of the Nylon chip or resin production accounts for 92% of total polymerization, while fiber production (directly from melting) accounts for 8% market share. Demand is expected to grow at an average annual growth rate (AAGR) of 2.4% for Nylon 6 ETP and fiber. The AAGR for Nylon 66 ETP and fiber demand is 2.6%. Capacity additions have been taking place mostly in China. The Nylon processes have been reviewed by IHS Chemical Process Economics Program (PEP) since its inception in 1962.

In this process summary, we review the key features for Nylon 6 and 66 production processes, and discuss recent technology developments and update the process economics for the following Nylon 6 and 66 stand-alone and integrated processes presented:

1. Stand-Alone Continuous Production of Nylon 6 Chips—similar to BASF, Mitsubishi Chemical, and Unitika
2. Stand-Alone Polyamide 6 chip production by continuous two-stage polymerization—similar to Zimmer
3. Nylon 6 chips by continuous process from cyclohexane via caprolactam (nitric oxide hydrogenation) NOx—similar to BASF
4. Nylon 6 chips by continuous process from cyclohexane via caprolactam (hydroxylamine phosphate oxime) HPO—similar to DSM
5. Nylon 6 chips by continuous process from phenol via caprolactam (hydroxylamine phosphate oxime) HPO—similar to DSM
6. Stand-Alone Nylon 66 resins by the continuous process—similar to BASF
7. Stand-Alone Nylon 66 chips from adipic acid and (hexamethylenediamine) HMDA—similar to Dupont
8. Stand-Alone Nylon 66 chips from a Nylon salt aqueous solution (63%) by a continuous process—similar to BASF
9. Nylon 66 by continuous process from cyclohexane via ADA oxidation and butadiene via HMDA hydrocyanation—similar to Dupont
10. Nylon 66 by continuous process from benzene via ADA, and butadiene via HMDA hydrocyanation—similar to Asahi
11. Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development—similar to BASF and Dupont
12. Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development—similar to BASF and Dupont with caprolactam by-product credit
13. Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from acrylonitrile via Ascend technology

14. Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from butadiene via Invista technology

The process economics include estimated capital costs and production costs: variable cost, plant cash cost, plantgate cost, and net production cost. Carbon and water footprint data for all competing processes are also included. A brief market overview summarizes the global supply and demand end-use market and demand drivers.

In addition, due to the feedstocks price fluctuation over time, a process with a lower production cost at a given time may have a higher production cost at a different time. A traditional snapshot process economics comparison, given a particular time and region, can often lead to a wrong process selection. A historical process economics comparison over a long period of time gives a better basis for investment decisions. Moreover, feedstock prices vary by global region; a process which has the lowest production costs in one region may not be the best in a different region.

To address the impact of feedstock price fluctuation, this process summary includes an iPEPSpectra interactive data module with which our clients can quickly compare historical production economics of competing processes in several major global regions from 2000 to 2015 quarterly. The interactive module, written as an Excel pivot table, is attached with the electronic version of this process summary. The module provides a powerful interactive tool to compare production economics at various levels, such as cost, cash cost, and full production cost. An iPEPSpectra historical economic comparison provides a more comprehensive way of assessing competing technologies, leading to more valid investment decisions.
Contents

1 Executive summary 1
Introduction 1
Technology 1
Processes 1
Licensors 3
Nylon 6 two stand-alone plants from caprolactam (capacity 150 thousand metric tons/yr) 3
Nylon 6 three integrated plants (capacity 150 thousand metric tons/yr) 3
Nylon 66 three stand-alone plant from adipic acid and HMDA (capacity 50 thousand metric tons/yr) 3
Nylon 66 six integrated plants (capacity 150 thousand metric tons/yr) 3
Comparison of process economics for Nylon 6 and 66 3
Nylon 6 economics 4
Nylon 66 economics 9
Historical pricing for Nylon 6 and 66 plus raw material pricing 13
Nylon 6 and 66 product pricing 13
Cyclohexane, precursor for both Nylon 6 and 66 15
Benzen, precursor for both Nylon 6 and 66 15
Caprolactam, precursor for Nylon 6 16
Butadiene, precursor for Nylon 66 16
Acrylonitrile, precursor for Nylon 66 17
Historical economics comparison—an iPEPSpectra™ analysis 17

2 Polyamide (Nylon) 6 and 66 production processes 18
Precursors to Nylon 6 processes 18
Nylon 6 two stand-alone plants (raw materials) 18
Nylon 6 three integrated plants (raw materials) 18
Review of technology for nylon 6 and its precursor 19
Technology for Nylon 6 19
Hydrosythetic polymerization 19
Anionic polymerization 20
Technology for caprolactam precursor of Nylon 6 21
Nylon 6 physical properties 22
Nylon 66 historical background 22
Technology basis for Nylon 66 competing with Nylon 6 22
Commercial processes for Nylon 6 23
Conventional continuous Nylon 6 plant stand-alone 23
Two-stage Nylon 6 process similar to Zimmer stand-alone 24
Nylon 6 by caprolactam from cyclohexane by nitric oxide (NOx) reductive process integrated plant 24
Nylon 6 by caprolactam from cyclohexane by hydroxylamine phosphate oxime (HPO) process integrated plant 25
Nylon 6 by caprolactam from phenol by hydroxylamine phosphate oxime (HPO) process integrated plant 25
Review of technology for Nylon 66 and its precursor 26
Nylon 66 three stand-alone plants (raw materials) 26
Nylon 66 six integrated plants (raw materials) 26
Chemical reaction for producing Nylon 66 26
Commercial processes for the production of adipic acid 27
Technology for hexamethylenediamine 27
Nylon 66 resins by the continuous process similar to BASF 27
Nylon 66 chips from adipic acid and hexamethylenediamine similar to Dupont
Nylon 66 chips from a Nylon salt aqueous solution (63%) by a continuous process
Nylon 66 by continuous process from cyclohexane via ADA oxidation and butadiene via HMDA hydrocyanation similar to Dupont
Nylon 66 by continuous process from benzene via ADA, and butadiene via HMDA hydrocyanation similar to Asahi
Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development of BASF and Dupont
Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development of BASF and Dupont with caprolactam by-product credit
Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from acrylonitrile via Ascend technology
Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from butadiene via Invista technology
Key process features for Nylon 6 and 66 stand-alone technologies
Recent developments
Uhde Inventa-Fischer technology—Nylon 6
Two-stage polymerization process
Single-stage polymerization process
Caprolactam refeeding options
Lurgi Zimmer polyamide technology—Nylon 6
Key features for Lurgi Zimmer polyamide two-stage process
Nylon 66 recent developments

3 Process economics
Unit consumption and variable costs
Nylon 6 stand-alone plants
Capital costs
Production costs
Unit consumption and variable costs
Nylon 6 integrated plants
Capital costs
Production costs
Unit consumption and variable costs
Nylon 66 stand-alone plants
Capital costs
Production costs
Unit consumption and variable costs
Nylon 66 integrated plants
Capital costs
Production costs
Environmental impacts
Nylon 6 environmental impact
Nylon 66 environmental impact

4 Market overview
Nylon 6 market overview
Nylon 66 market overview

5 Historical economics comparison—iPEPSpectra™ analysis
Historical process economics comparison—iPEPSpectra™ cost module
Historical plant cash cost for Nylon 6
Historical spread (margin) for Nylon 6
Historical plant cash cost for Nylon 66
Historical spread (margin) for Nylon 66
6 Detailed process economics

7 Cost bases
 Capital investment 111
 Production costs 111
 Effect of operating level on production costs 112

8 Cited references 113

Figures

- Figure 1.1: Block flow diagram of Nylon 6 chain overview
- Figure 1.2: Block flow diagram of Nylon 6,6 chain overview
- Figure 1.3: Comparison of Nylon 6 technology—Capital intensity
- Figure 1.4: Comparison of Nylon 6 technology—Total fixed capital
- Figure 1.5: Comparison of Nylon 6 technology—Production costs
- Figure 1.6: Comparison of Nylon 6 technology—Based on carbon emission
- Figure 1.7: Comparison of Nylon 6 technology—Based on water consumption
- Figure 1.8: Comparison of Nylon 66 technology—Capital intensity
- Figure 1.9: Comparison of Nylon 66 technology—Total fixed capital
- Figure 1.10: Comparison of Nylon 66 technology—Production costs
- Figure 1.11: Comparison of Nylon 66 technology—Based on carbon emissions
- Figure 1.12: Comparison of Nylon 66 technologies—Based on water consumption
- Figure 1.13: Nylon 6 chips historical pricing for major regions
- Figure 1.14: Nylon 66 resins historical pricing for major regions
- Figure 1.15: Cyclohexane historical pricing in major regions
- Figure 1.16: Benzene historical pricing in major regions
- Figure 1.17: Caprolactam historical pricing in major regions
- Figure 1.18: Butadiene historical pricing in major regions
- Figure 1.19: Acrylonitrile historical pricing in major regions
- Figure 1.20: Historical spread (margin) for Nylon 6 stand-alone plants for major regions
- Figure 2.1: Conventional continuous Nylon 6 plant stand-alone
- Figure 2.2: Two-Stage Nylon 6 process similar to Zimmer stand-alone
- Figure 2.3: Nylon 6 by caprolactam from cyclohexane by nitric oxide (NOx) reductive process integrated plant
- Figure 2.4: Nylon 6 by caprolactam from cyclohexane by hydroxylamine phosphate oxime (HPO) process integrated plant
- Figure 2.5: Nylon 6 by caprolactam from phenol by hydroxylamine phosphate oxime (HPO) process integrated plant
- Figure 2.6: Nylon 66 resins by the continuous process similar to BASF
- Figure 2.7: Nylon 66 chips from adipic acid and hexamethylenediamine similar to Dupont
- Figure 2.8: Nylon 66 chips from a Nylon salt aqueous solution (63%) by a continuous process
- Figure 2.9: Nylon 66 by continuous process from cyclohexane via ADA oxidation and butadiene via HMDA hydrocyanation similar to Dupont
- Figure 2.10: Nylon 66 by continuous process from benzene via ADA, and butadiene via HMDA hydrocyanation similar to Asahi
- Figure 2.11: Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development of BASF and Dupont
- Figure 2.12: Nylon 66 by continuous process from butadiene via caprolactam/HMDA from ADN joint development of BASF and Dupont with caprolactam by-product credit
- Figure 2.13: Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from acrylonitrile via Ascend technology
Figure 2.14: Nylon 66 by continuous process from cyclohexane via ADA oxidation and HMDA from butadiene via Invista technology

Figure 2.15: Uhde Inventa-Fischer's two-stage polymerization

Figure 2.16: Block flow diagram of Uhde Inventa-Fischer refeeding

Figure 2.17: Lurgi Zimmer polyamide 6 two-stage process scheme

Figure 4.1: Nylon 6 global supply and demand

Figure 4.2: Nylon 6 resin global demand

Figure 4.3: World 2014 Nylon 6 engineering resin demand by region

Figure 4.4: Global nylon 66 resin supply and demand

Figure 4.5: World 2014 Nylon 66 engineering resin demand

Figure 4.6: World 2014 nylon 66 engineering resin demand by region

Figure 5.1: Production plant cash cost for Nylon 6 stand-alone plant technologies

Figure 5.2: Production plant cash cost for Nylon 6 integrated plant technologies—Nylon 6 chips by continuous process from cyclohexane via caprolactam

Figure 5.3: Production plant cash cost for Nylon 6 stand-alone continuous plant in major regions—Continuous production of nylon 6 chips

Figure 5.4: Production plant cash cost for Nylon 6 stand-alone plant two-stage in major regions—Polyamide 6 chip production by a process similar to Zimmer® continuous two-stage polymerization process

Figure 5.5: Production plant cash cost for Nylon 6 integrated plant in major regions—Nylon 6 chips by continuous process from cyclohexane via caprolactam NOx

Figure 5.6: Production plant cash cost for Nylon 6 integrated plant in major regions—Nylon 6 chips by cont. process from cyclohexane via caprolactam HPO

Figure 5.7: Production plant cash cost for Nylon 6 integrated plant in major regions—Nylon 6 chips by cont. process from phenol via caprolactam HPO

Figure 5.8: Nylon 6 stand-alone plant cash margin in major regions—Continuous production of Nylon 6 chips

Figure 5.9: Nylon 6 stand-alone plant cash margin in major regions—Polyamide 6 chip by a process similar to Zimmer® continuous two-stage polymerization process

Figure 5.10: Nylon 6 integrated plant cash margin in major regions—Nylon 6 chips by cont. process from cyclohexane via caprolactam NOx

Figure 5.11: Nylon 6 integrated plant cash margin in major regions—Nylon 6 chips by cont. process from cyclohexane via caprolactam HPO

Figure 5.12: Nylon 6 integrated plant cash margin in major regions—Nylon 6 chips by cont. process from phenol via caprolactam HPO

Figure 5.13: Production plant cash cost for Nylon 66 stand-alone plant technologies

Figure 5.14: Production plant cash cost for Nylon 66 integrated plant technologies

Figure 5.15: Production plant cash cost for Nylon 66 stand-alone plants in major regions—Nylon 66 chips from adipic acid and hexamethylenediamine

Figure 5.16: Production plant cash cost for Nylon 66 stand-alone plant in major regions—Nylon 66 chips from a nylon salt aqueous solution (63%) by a continuous process

Figure 5.17: Production plant cash cost for Nylon 66 stand-alone plant in major regions Nylon 66 resins by the continuous process

Figure 5.18: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 by cont. process from cyclohexane via ADA oxidation and ADN via HMDA

Figure 5.19: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 by cont. process from benzene via ADA and butadiene via HMDA hydrocyanation

Figure 5.20: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 by cont. process from butadiene via caprolactam/HMDA from ADN

Figure 5.21: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 [caprolactam by-product], by cont. process from butadiene via caprolactam/HMDA ADN

Figure 5.22: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 by cont. process from cyclohexane via ADA oxidation and HMDA from acrylonitrile via ascend electrohydromerization

Figure 5.23: Production plant cash cost for Nylon 66 integrated plant in major regions—Nylon 66 by cont. process from cyclohexane via ADA oxidation and HMDA from butadiene via Invista hydrocyanation
Tables

Table 2.1: Nylon 6 properties 22
Table 2.2: Nylon 66 properties 22
Table 2.3: Nylon 66 resin property advantages versus Nylon 6 23
Table 2.4: Comparison on key process features of Nylon 6 stand-alone technologies 35
Table 2.5: Comparison of key process features of Nylon 66 stand-alone technologies 36
Table 2.6: Nylon 66 application based on relative viscosity 36
Table 3.1: Variable costs of Nylon 6 stand-alone production processes 41
Table 3.2: Capital costs of Nylon 6 stand-alone production processes 41
Table 3.3: Production costs of Nylon 6 stand-alone production processes 42
Table 3.4: Variable costs of Nylon 6 integrated production processes 43
Table 3.5: Capital costs of Nylon 6 integrated production processes 44
Table 3.6: Production costs of Nylon 6 integrated production processes 44
Table 3.7: Variable costs of nylon 66 stand-alone production processes 45
Table 3.8: Capital costs of Nylon 66 integrated production processes 46
Table 3.9: Production costs of Nylon 66 integrated production processes 46
Table 3.10: Variable costs of Nylon 66 integrated production processes 47
Table 3.11: Capital costs of Nylon 66 integrated production processes 49
Table 3.12: Production costs of Nylon 66 integrated production processes 50
Table 3.13: Environmental impacts of Nylon 6 production processes 51
Table 3.14: Environmental impacts of Nylon 66 production processes 51
Table 4.1: Global top producers of Nylon 6 engineering resins 54
Table 4.2: Top producers of Nylon 66 engineering resins 56