Process Economics Program

Review 2014-14
Polybutadiene Production by Lithium Catalyst

By Girish Ballal
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Abstract

Polybutadiene is the second-largest-volume elastomer in the world. The primary end use includes automobile tires, followed by industrial applications (belts and hoses) and consumer items (golf balls). It is almost entirely produced by solution polymerization of butadiene, using catalysts based on lithium, or transition metals such as neodymium, cobalt, and nickel. The microstructure and physical properties of the polymer are determined largely by the catalyst system. Anionic polymerization using a lithium-based catalyst system provides one of the most versatile methods for producing polybutadiene. A variety of microstructures containing varying amounts of cis, trans and vinyl contents are achievable using the lithium catalyst. The reactor effluent contains elastomer dissolved in a large excess of solvent. It is typically coagulated and separated from the solvent using steam stripping. The solvent is recycled to the reactors, and the elastomer undergoes a series of polymer processing operations.

In this PEP report, we primarily focus on the solution polymerization of butadiene using a lithium catalyst. We review developments made since the publication of our previous PEP review on this subject in 1996. The process economics are presented for producing 50,000 MT/yr of polybutadiene product at a US Gulf Coast location.

While the processes are PEP’s independent interpretation of the companies’ patent literature and may not reflect in whole or in part the actual plant configuration, we do believe that they are sufficiently representative of the processes to estimate the plant economics within the range of accuracy for economic evaluations of the conceptual process designs.
Contents

1. Introduction ... 6

2. Commercial overview ... 6

3. Technology overview .. 10
 Production process .. 12
 Catalyst and reactions .. 13
 Ziegler-Natta catalyst polymerization ... 13
 Anionic polymerization ... 14
 Patent review ... 16

4. Process description .. 17
 Recipe preparation ... 17
 Polymerization .. 17
 Polymer processing .. 18

5. Process discussion ... 22
 Patent selection .. 22
 Chemicals .. 22
 Reactors ... 23
 Polymer recovery .. 23
 Materials of construction ... 23
 Waste treatment ... 24

6. Cost estimates .. 26
 Fixed-capital costs ... 26
 Production costs .. 26

References ... 32
Tables

Table 1: Polybutadiene Global Producers... 9
Table 2: Design Basis and Assumptions... 19
Table 3: Process Streams .. 20
Table 4: Major Equipment .. 25
Table 5: Total Capital Investment... 28
Table 6: Production Costs ... 29
Table 7: Production Costs (metric units) .. 31

Figures

Figure 1: Polybutadiene Demand by End Uses .. 7
Figure 2: Polybutadiene Demand by Geographical Regions .. 7
Figure 3: Polybutadiene Historical Supply and Demand .. 8
Figure 4: Polybutadiene Historical Prices .. 10
Figure 5: Polybutadiene Isomers ... 11
Figure 6: Glass Transition Temperature as a Function of Vinyl Content ... 15
Figure 7: Tire Performance as a Function of Vinyl Content ... 15
Figure 8: Effect of Plant Capacity on Costs .. 27
Figure 9: Polybutadiene Production by Lithium Catalyst ... 33