IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Abstract

Methyl methacrylate (MMA) is a high-value monomer in the production of acrylic polymers, used for making plastics, surface coating resins, emulsion polymers, and extrusion compounds. The main end use of plastics is fabricated products such as building materials, lighting fixtures, signs, displays, sanitary items, glazing, lighting fixtures, lenses, and appliances. The demand for MMA is highly dependent upon the economy, and specifically on economic cycle-sensitive applications in the construction and automotive industries. The world consumption of MMA was approximately 3.3 million metric tons in 2013 (against a capacity of about 4.36 million metric tons). In 2013-2018, demand is projected to grow at 3.4% AAGR to reach 3.90 million metric tons in 2018, while capacity is estimated to grow at 2.9% AAGR to reach 5.02 million metric tons in 2018.

From the process standpoint, MMA is particularly interesting since it can be produced by several feedstocks such as ethylene (C\textsubscript{2}), acetone (C\textsubscript{3}), and isobutylene or butyl alcohol (C\textsubscript{4}). The main objective of this process summary is to provide a succinct comparison of key process features and present a snapshot comparison of production economics, including carbon and water footprints of major competing commercial processes in Q1 2014. However, due to the price fluctuation of the three feedstocks over time, and because each follows different market dynamics, a process which shows the lowest production costs at any given time may have the highest production cost at a different time. Moreover, feedstock prices vary by global regions, a process which has the lowest production costs in one region may not be the best in a different region. Therefore, a traditional snapshot process economics comparison for a particular time and region will often not give a complete picture, and can lead to a wrong process selection. A historical process economics comparison over a long period of time gives a better basis for investment decisions.

To overcome the deficiency of traditional snapshot economics comparison, this process summary highlights the new iPEP Spectra interactive data module by which our clients can quickly compare historical production economics of competing processes in several major global regions. The interactive module, written as an Excel pivot table, is attached with the electronic version of this process summary. The module provides a powerful interactive tool to compare production economics at various levels, such as variable cost, cash cost, and full production cost. An iPEP Spectra historical economics comparison provides a more comprehensive way of assessing competing technologies, leading to better investment decisions.
Table of Contents

1. Executive summary ... 1
 Introduction .. 1
 Technology ... 1
 Processes .. 1
 Licensors ... 1
 Comparison of process economics .. 2
 Comparison of carbon emissions .. 3
 Comparison of water consumption .. 4
 Historical economics comparison—an iPEPSpectra™ analysis ... 5
2. MMA production processes ... 8
 Introduction ... 8
 C₂-based technologies .. 9
 C₃-based technologies ... 11
 C₄-based technologies ... 14
 Product properties .. 16
 Commercial processes .. 16
 C₃-based technologies ... 16
 C₄-based technologies ... 22
 C₂-based technologies ... 27
3. Process economics .. 31
 Unit consumption and variable costs .. 31
 Capital costs .. 33
 Production costs .. 35
 Environmental impacts .. 37
4. Market overview ... 39
5. Historical economics comparison—an iPEPSpectra™ analysis ... 43
 Historical prices .. 43
 Ethylene ... 43
 Acetone ... 44
 Isobutylene .. 45
 Gasoline grade t-butanol .. 45
 Historical process economics comparison - iPEPSpectra™ cost module 46
 Historical plant cash cost ... 46
 Historical spread .. 52
6. Detailed process economics ... 55
7. Cost bases ... 75
 Capital investment ... 75
 Production costs ... 76
 Effect of operating level on production costs ... 76
8. Cited references .. 77
Tables

Table 1: Typical Physical Properties of MMA ... 16
Table 2: Comparison of Key Process Features of C3-Based MMA Technologies ... 21
Table 3: Comparison of Key Process Features of C4-Based MMA Technologies ... 26
Table 4: Comparison of Key Process Features of C2-Based MMA Technologies ... 30
Table 5a: Variable Costs of MMA C3- (Acetone-) Based Production Processes ... 31
Table 5b: Variable Costs of C4- (Isobutylene- or t-Butanol-) Based MMA Production Processes 32
Table 5c: Variable Costs of C2- (Ethylene-) Based MMA Production Processes .. 33
Table 6a: Capital Costs of C3- (Acetone-) Based MMA Production Processes ... 34
Table 6b: Capital Costs of C4- (Isobutylene- or t-Butanol-) Based MMA Production Processes 34
Table 6c: Capital Costs of C2- (Ethylene-) Based MMA Production Processes .. 35
Table 7a: Production Costs of C3-Based MMA Processes .. 36
Table 7b: Production Costs of C4-Based MMA Processes .. 36
Table 7c: Production Costs of C2- (Ethylene-) based MMA Production Processes 37
Table 8a: Environmental Impacts of C3-Based MMA Production Processes .. 38
Table 8b: Environmental Impacts of C4- (Isobutylene- or t-Butanol-) Based MMA Production Processes 38
Table 8c: Environmental Impacts of C2- (Ethylene-) Based MMA Production Processes 39
Table 9: Projected MMA Capacity Growth from 2013 to 2018 by Major Producers by Technology 41
Table 10: Methyl Methacrylate from Conventional Acetone Cyanohydrin Process Production Costs 55
Table 11: Methyl Methacrylate from Conventional Acetone Cyanohydrin Process with Sulfuric Acid Recycle Production Costs ... 57
Table 12: Methyl Methacrylate by MGC ACH Process with Methy Formate Production Costs 59
Table 13: Methyl Methacrylate by MGC ACH Process with Methanol Production Costs 61
Table 14: Methyl Methacrylate by Integrated Evonik Process Production Costs ... 63
Table 15: Methyl Methacrylate via Separate Direct Oxidation Technology (C4-Based) Production Costs .. 65
Table 16: Methyl Methacrylate via Sumitomo/Nippon Tandem Oxidation Technology (C4-Based) Production Costs ... 67
Table 17: Methyl Methacrylate via Asahi Direct Oxidative Technology (2-Step C4-Based) Production Costs .. 69
Table 18: Methyl Methacrylate from BASF Ethylene via Propionaldehyde and Methacrolein Production Costs .. 71
Table 19: Methyl Methacrylate from Ethylene via Lucite Technology Production Costs 73

Figures

Figure 1: Comparison of Technologies–Total Fixed Capital Investment .. 2
Figure 2: Comparison of Technologies–Production Costs ... 3
Figure 3: Comparison of Carbon Emission .. 4
Figure 4: Comparison of Water Consumption .. 5
Figure 5: Historical Economics Comparison of Five Selected Competing Processes in USGC 6
Figure 6: Historical Economics Comparison of Five Selected Competing Processes in China 7
Figure 7: Historical Cash Margins for Lucite C₂ Process in USGC ... 8
Figure 8: Routes to Methyl Methacrylate .. 9
Figure 9: Conventional ACH Process Block Flow Diagram .. 17
Figure 10: Conventional ACH Process with Sulfuric Acid Recycle Block Flow Diagram 18
Figure 11: MGC’s ACH Process Block Flow Diagram (Esterification with Methyl Formate) 19
Figure 12: MGC’s ACH Process Block Flow Diagram (Methanol as Esterification Agent) 20
Figure 13: Evonik AVENEER® Process Block Flow Diagram ... 21
Figure 14a: Separate C₄ Direct Oxidation Process Block Flow Diagram .. 23
Figure 14b: Tandem C₄ Direct Oxidation Process Block Flow Diagram .. 24
Figure 15: Direct Oxidative Esterification (2-step) C₄ Process Block Flow Diagram 25
Figure 16: BASF MMA Process from Ethylene via Propionaldehyde Process Block Flow Diagram 28
Figure 17: Lucite MMA from Ethylene via Methyl Propionate Process Block Flow Diagram 29
Figure 18: MMA Global Supply and Demand ... 39
Figure 19: MMA Global Capacity by Region ... 40
Figure 20: MMA Global Capacity in 2013 by Process Technology and by Region 40
Figure 21: Projected MMA Global Capacity in 2018 by Process Technology 41
Figure 22: MMA Demand by Region for 2013 ... 42
Figure 23: Historical Ethylene Prices ... 43
Figure 24: Historical Acetone Prices ... 44
Figure 25: Historical High Purity Isobutylene Prices .. 45
Figure 26: Historical Prices for Gasoline Grade t-Butanol ... 46
Figure 27a: Comparison of Plant Cash Cost for MMA Produced by Selected Processes in USGC 47
Figure 27b: Comparison of Plant Cash Cost for MMA Produced by Selected Processes in China 48
Figure 28a: Comparison of Plant Cash Cost of MMA Produced by Conventional ACH Process with Sulfuric Acid Recycle in Major Regions ... 49
Figure 28b: Comparison of Plant Cash Cost of MMA Produced by Integrated Evonik C₃ Process in Major Regions .. 50
Figure 28c: Comparison of Plant Cash Cost of MMA Produced by Lucite C₂ Process in Major Regions ... 51
Figure 28d: Comparison of Plant Cash Cost of MMA Produced by a Generic C₄ Process using Gasoline Grade t-Butanol in Major Regions .. 52
Figure 29a: Historical Spread for MMA Produced by Conventional ACH (C₃) Process in USGC 53
Figure 29b: Historical Spread for MMA Produced by Conventional ACH (C₃) Process in China 54