IHS Chemical

Process Economics Program

Review 2013-14
Liquid-Phase Alkylation of Dilute Ethylene to Ethylbenzene by Lummus Process

By Sumod Kalakkunnath

December 2013 ihs.com/chemical
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
PEP Review 2013-14

Liquid-Phase Alkylation of Dilute Ethylene to Ethylbenzene by Lummus Process

By Sumod Kalakkunnath

December 2013

Abstract

This review presents a technoeconomic evaluation of ethylbenzene production from liquid-phase alkylation of dilute ethylene and benzene based upon the technical information and data available in patents assigned to Lummus Technology Inc. Although a zeolite catalyst-based liquid-phase alkylation of ethylene is an established process, the current configuration developed in a Lummus/CDTECH collaboration has not yet been commercialized. However, we firmly believe that the process design and economics presented herein would be a reasonably accurate representation of the actual process when commercialized.

In this review, 522,000 metric t/yr of ethylbenzene is produced via liquid-phase alkylation of dilute ethylene (from desulfurized FCC off-gas) and benzene. The feedstock FCC gas is first pretreated to remove propane and heavier constituents. The gas with dilute ethylene and benzene is fed to an alkylation reactor wherein ~90% of ethylene conversion takes places at about 220°C (428°F) and 425 psia using a proprietary, zeolite beta catalyst. The innovation lies in the unique “baled” configuration of zeolite catalyst which is arranged as structured packing in the reactor. The reactor, which works on a catalytic distillation principle, gets a liquid benzene reflux from the top and a vapor recycle from the trayed section connected to the bottom. The reactor overheads are condensed and separated into vapor and liquid phases. The vapor phase with a majority of the ethylene is sent to a finishing reactor to complete the ethylene conversion at about 200°C (392°F) and 725 psia. The condensed liquid phase is sent to a transalkylation reactor wherein the polyethylbenzene by-products are converted to ethylbenzene at about 185°C (365°F) and 425 psia. The bottom streams of the three reactors are merged and sent to a product recovery section comprised of three distillation units to separate the ethylbenzene product and recycle the benzene and polyethylbenzenes.

Our cost analysis is based on a plant producing 522,000 metric t/yr of ethylbenzene at a 0.9 stream factor (equal to an installed capacity of 579,000 metric t/yr). Cost estimates, details thereof, and relevant assumptions are provided in this review.
Contents

Review summary ... 1
Introduction.. 2
Commercial overview .. 3
Technology overview.. 4
 Technical review ... 5
 Reactors and reaction system .. 6
 Catalyst preparation ... 6
 Catalyst life ... 7
Process description ... 7
 Section 100—feed purification section .. 8
 Section 200—alkylation section ... 8
 Section 300—ethylbenzene recovery section ... 9
Process discussion .. 14
 Feedstock.. 14
 Alkylation reactor ... 14
 Transalkylation reactor .. 15
 Finishing reactor ... 15
 Product purity .. 15
 Process design optimization .. 15
 Process waste effluents .. 16
 Materials of construction ... 16
Cost estimates .. 19
 Fixed-capital costs ... 20
 Production costs .. 20
References .. 26
Figures

1. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Process flow diagram ... 27
2. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Net production cost and product value of ethylbenzene as a function of FCC off-gas price 2
3. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Zeolite arrangement in alkylation reaction (inset: bale of zeolite catalyst) 6
4. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Net production cost and product value of ethylbenzene as a function of FCC off-gas price 25
5. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Product value of ethylbenzene as a function of plant operating level and plant capacity 25
Tables

1. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Design bases ... 11
2. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Stream flows .. 12
3. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Major equipment .. 17
4. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Utilities summary .. 19
5. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Total capital investment ... 21
6. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Capital investment by section ... 22
7. Liquid-phase alkylation of dilute ethylene to ethylbenzene by Lummus process
 Production costs .. 23