Process Economics Program

Review 2013-10
Adipic Acid from Free Fatty Acids via Verdezyne Fermentation

By Anthony Pavone
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Adipic Acid from Free Fatty Acids via Verdezyne Fermentation

By Anthony Pavone

December 2013

Abstract

IHS published PEP Report 284 in 2012 on bio-based adipic acid (ADA), which included an evaluation of Verdezyne process technology using their Generation-1 genetically modified yeast to convert glucose to adipic acid via fermentation. Verdezyne has subsequently developed Generation-2 yeast for adipic acid production from palm oil fatty acid distillate (PFAD). The new generation of genetically modified yeast claims faster productivity, and a tolerance for the high pH environment resulting from high concentrations of adipic acid product (up to 10 weight percent) in the fermentation broth. Given the solubility of adipic acid in water at fermentation temperatures being only 3.5%, the broth is supersaturated with adipic acid crystals. Verdezyne claims that Generation-2 yeast converts 1 mol of PFAD to 1 mol of adipic acid, for a mass consumption of approximately 2 mt PFAD producing 1 mt ADA. Verdezyne also claims adipic acid fermentation production rates of 1 gm/hr-liter, and insensitivity of this rate to the concentration of adipic acid in the fermentation broth.

In this PEP review, we evaluate our understanding of Verdezyne’s Generation-2 yeast technology, and we have modified significant portions of our process design from 2012 to take advantage of the process benefits provided by Verdezyne intellectual property. Conventional bio-based acid processes must operate at low broth acid concentrations given the sensitivity of organisms to low pH, requiring a complicated solution concentration approach. The two approaches most often used are liquid-liquid extraction, or converting the acid to a corresponding salt (often an ammonium salt), to eliminate the acid pH solution problem while allowing reasonably efficient reversion of the salt back to adipic acid. At the Verdezyne 10% adipic acid concentration in fermentation broth, concentration can be effected by three-stage evaporation.

The conventional DuPont/INVISTA adipic acid process converts cyclohexane to adipic acid using a two-step oxidation process in nitric acid. Besides the expensive metallurgy required for handling hot nitric acid (titanium), the conventional process produces significant quantities of by-product succinic acid and glutaric acid. Succinic acid crystallizes at a temperature slightly above adipic acid, while glutaric acid crystallizes at a temperature slightly below adipic acid. To effectively purify adipic acid via crystallization, there is a narrow concentration/temperature window in which to crystallize adipic acid without also crystallizing the other two by-products. In practice, this requires conducting the crystallization at sub-ambient temperatures at high vacuum, in order to remove water from the crystallizer solution as the crystals are precipitating out of solution. The vacuum compression requirement is both highly capital intensive, and highly energy intensive. Since the Verdezyne Generation-2 process produces only mono-carboxylic by-products, the crystallization dilemma is avoided.

In this review we update our understanding of Verdezyne’s Generation-2 adipic acid fermentation from PFAD technology using the approaches described above. We present both the technical aspects (process flow diagrams, equipment lists, material balances), and the corresponding capital cost and operating cost estimates for manufacture at a commercially competitive 160 kty capacity.
Contents

Introduction—2012 PEP report on adipic acid ... 1
Adipic acid overview ... 1
Background information on adipic acid ... 2
Adipic acid supply and demand comparison ... 5
 Adipic acid capacity utilization ... 5
Adipic acid demand and demand growth .. 7
2012 adipic acid nameplate production capacity .. 8
 Adipic acid producing companies .. 10
 Announced adipic acid production capacity increases .. 12
 Adipic acid capacity shutdowns ... 13
Adipic acid product grades and composition ... 13
Adipic acid price and margin history .. 14
 Short-term prices for adipic acid .. 15
 Nylon 66 versus adipic acid margins .. 15
Verdezyne status of adipic acid development ... 17
 Verdezyne adipic acid technology using free fatty acid feedstock 17
 Source of feedstock ... 18
Verdezyne patent estate .. 19
 Project feedstock stoichiometry ... 19
PFAD project basis feedstock .. 20
 PFAD feedstock specifications ... 21
Verdezyne’s genetically modified yeast catalysts .. 24
 Verdezyne yeast unit production rate capability .. 25
Project design basis .. 25
 Batch versus continuous fermentation .. 26
 Pricing basis used in this PEP review ... 27
Input/output diagram ... 28
Project block flow diagram ... 28
Use of Vogelbusch fermentation technology .. 32
Off-site facilities .. 33
Materials of construction ... 34
Engineering and design standards .. 34
Site-specific design conditions .. 35
 Available utilities ... 35
Feedstock and product specifications .. 36
 Adipic acid product ... 36
Adipic acid product packaging and shipping specifications ... 36
Process description and process flow diagram ... 37
 Section 100—seed fermentation ... 37
 Section 200—adipic acid fermentation using Verdezyne genetically modified Candida yeast ... 38
Contents (concluded)

Section 300—evaporation and filtration ... 39
Section 400—two-stage aqueous crystallization of adipic acid 40
Section 500—adipic acid crystal drying and product packaging 41
Section 600—methyl ester production of acidic by-products 42
Material balance .. 43
Equipment list with duty specifications ... 55
Itemized capital cost estimate .. 61
Total fixed capital cost estimate ... 67
Production cost ... 69
Comparison to 2012 PEP report results ... 71
References ... 73
Figures

1. Adipic acid molecular structure... 3
2. Adipic acid integrated product chain.. 3
3. World adipic acid supply and demand ... 5
4. World adipic acid capacity utilization.. 6
5. Global geographic demand distribution for adipic acid in 2011 8
6. Historic and forecast global adipic acid capacity .. 8
7. 2013 adipic acid capacity by geographical region....................................... 9
8. 2013 adipic acid capacity share by producer .. 10
9. Historical US export price of adipic acid .. 14
10. Regional adipic acid prices 2000–2011.. 15
11. Nylon 66 raw material prices (2012).. 16
12. Long-term nylon 66 product chain prices.. 17
13. Palm fatty acid distillate (PFAD)... 21
14. Historical prices of natural oils... 24
15. Adipic acid solubility in water... 25
16. Adipic acid plant input/output diagram.. 28
17. Project block flow diagram... 29
18. Solubility of adipic acid in water... 30
19. Vogelbusch multi-column distillation... 33
20. Section 100—seed fermentation.. 38
21. Section 200—adipic acid fermentation.. 39
22. Section 300—evaporation and filtration.. 40
23. Section 400—crystallization ... 41
24. Section 500—adipic acid drying and packaging .. 42
25. Section 600—methyl ester production... 43
26. Adipic acid from free fatty acids via Verdezyne fermentation.................... 77
Tables

1. Adipic acid physical properties .. 2
2. Status of bio-based adipic acid developers .. 4
3. Adipic acid capacity by country to 2013 ... 9
4. Forecast adipic acid capacity by country 2012–2016 10
5. 2013 adipic acid capacity share by producer 11
6. 2013 adipic acid capacity by plant site .. 11
7. Adipic acid capacity additions .. 13
8. Adipic acid capacity eliminations .. 13
9. INVISTA fiber-grade adipic acid specification 13
10. Radici fiber-grade adipic acid specification 14
11. Alibaba offering prices for Chinese adipic acid (October 2013) 15
12. Nylon raw material margins .. 16
13. Global production of natural oils (billion pounds per year) 18
14. Composition of natural oils by carbon number (wt%) 18
15. Melting point and boiling point of natural oils (°C) 18
16. Verdezyne patent estate ... 19
17. Typical PFAD commercial specifications 21
18. PFAD carbon number distribution ... 22
19. December 2013 spot prices from Malaysian Palm Oil Board 23
20. 2013 international pricing for natural oils 23
21. Design basis comparison with PEP Report 284 for Verdezyne technology 27
22. Unit pricing comparison between PEP Report 284 and PEP Review 2013-10 28
24. IHS off-site capital cost components ... 34
25. Relevant project standards setting organizations 35
26. Temperature design considerations .. 35
27. Adipic acid fiber-grade product specification 36
28. Materials supply to enzyme preparation fermenters 37
29. Typical production fermenter additive composition (WO 2010/003728) 39
30. Unit feedstock and by-product consumption 43
31. Stream-by-stream material balance .. 44
32. Equipment list with duty specifications 56
33. Class-3 itemized capital cost estimate segmentation 61
34. Itemized capital cost estimate .. 62
35. ISBL itemized capital cost estimate by equipment type 66
36. Installed cost by section of plant ... 67
37. Total fixed capital cost estimate ... 68
38. Production cost estimate .. 70
39. Production economics comparison ... 72
Tables (concluded)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Cited references</td>
</tr>
<tr>
<td>41</td>
<td>Patent summary</td>
</tr>
</tbody>
</table>