Process Economics Program

Review 2013-04
Davy Methanation Process Technology
Integrated with
Coal to Substitute Natural Gas

By Dipti Dave

April 2013 ihs.com/chemical
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Abstract

What initially prompted the production of substitute natural gas (SNG) in the United States was the concern over volatile natural gas prices, declining gas production, and domestic energy security. These factors sparked a revival of interest in developing reliable domestic sources that are decoupled from the world oil market. SNG presents an opportunity for production from cheap and plentiful US coal supplies, and has costs driven by coal prices and plant construction, rather than international energy markets.

The United States has many projects on the horizon for coal-to-SNG, but some of these projects are being delayed due to financing challenges or are being redesigned into another product from coal (instead of SNG) as a result of the recent fall in US gas prices.

On the other hand, China’s coal-to-SNG projects are progressing at full speed because China’s gas prices are approximately 2–3 times higher than those in the United States. China has traditionally imported most of its gas either via pipeline from Russia or it has been shipped in as liquefied natural gas (LNG). Making its own SNG is one way for China to use its large coal assets rather than importing energy. China already has excellent logistics for moving coal with the existing rails and roadways. Therefore, the delivery of SNG energy to the marketplace may occur through the existing and expanding pipeline infrastructure.

The main focus of this report is evaluating the technoeconomics of SNG production from the Davy methanation process technology which is integrated with coal gasification by the Shell gasification process. The base case cost estimates are for producing approximately 70.5 billion scf/yr of substitute natural gas that is of pipeline quality.
Contents

Background ... 1
Industry status .. 2
Projects ... 2
Technology review ... 3
 Thermodynamic analysis of methanation ... 3
 Methanation reactions ... 4
Davy Process Technology for production of SNG .. 7
 Features of stoichiometric vs. nonstoichiometric ... 8
 Methanation chemistry ... 8
 Davy Process Technology flowsheet variations for production of SNG 8
Davy methanation integrated with coal to SNG .. 16
Basis for design and evaluation .. 17
Process description .. 21
 Desulfurization and bulk methanation—Section 700 ... 21
 Trim methanation and recycle—Section 700 ... 21
 Offsites and utilities .. 22
 Shutdown and catalyst discharge .. 22
 SNG drying—Section 800 ... 22
 Stream flows .. 23
Cost estimates ... 23
 Fixed-capital costs ... 24
 Production costs ... 24
Conclusion ... 25
References ... 36
Figures

1. Davy Process Technology SNG block flow diagram ... 1
2. Effect of H\textsubscript{2}/CO ratio .. 6
3. Davy Process Technology for production of SNG .. 7
4. Flow variation I block flow diagram .. 9
5. Flow variation II block flow diagram ... 11
6. Flow variation III block flow diagram .. 12
7. Flow variation IV block flow diagram .. 13
8. Base case block flow diagram for SNG production .. 14
9. Davy methanation integrated with coal to SNG ... 16
10. Desulfurization and bulk methanation Process flow diagram .. 37
11. Trim methanation, recycle, and start-up Process flow diagram .. 39
Tables

1. Davy Process Technology SNG projects ... 2
2. Reactions in the methanation of carbon oxides .. 4
3. Base case operating parameters .. 14
4. Flow variation I operating parameters ... 15
5. Flow variation II operating parameters ... 15
6. Process sections ... 17
7. Clean syngas feedstock to Davy methanation ... 18
8. Basis for estimates and evaluations—SNG from coal by Davy methanation process technology 18
9. Davy methanation SNG product specification .. 20
10. SNG from coal by Davy methanation process
 Stream flows .. 23
11. Coal to SNG
 Total capital investment .. 26
12. Coal to SNG
 Production costs .. 27
13. Coal to SNG
 Utilities summary .. 29
14. Davy methanation process technology
 Utilities summary .. 30
15. Davy methanation process technology
 Total capital investment .. 31
16. Davy methanation process technology
 Production costs .. 32
17. Davy methanation process technology
 Major equipment .. 34