IHS Chemical

Process Economics Program

Review 2013-03
Cerenol™—DuPont Polyether Glycol
Made from 1,3-Propanediol (PDO)

By Anthony Pavone
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
PEP Review 2013-03

Cerenol™—DuPont Polyether Glycol Made from 1,3-Propanediol (PDO)

By Anthony Pavone

April 2013

Abstract

Cerenol™ is a trademarked family [1] of polyether polyl liquid glycols (PEGs) invented, manufactured, and marketed by DuPont since 2008 using bio-based 1,3-propanediol (PDO, CAS 504-63-2) as the basic feedstock. PDO, in turn, is produced by DuPont entirely via corn sugar fermentation [2] using genetically modified E. coli bacteria developed by DuPont in partnership with Tate & Lyle. Cerenol grades include both homopolymers of PDO and copolymers using other conventional polyol feedstocks. Cerenol has found commercial applications in automotive coatings, personal care products, thermoplastic elastomers, as a functional heat transfer fluid, and as an impact-resistant engineering plastic. Cerenol commercial products include solid Hytrel® thermoplastic elastomers and liquid performance coatings [3]. Marketing data indicate that both DuPont and Shell Oil developed PDO originally as a co-feed with purified terephthalic acid (PTA) to produce polytrimethylene terephthalate (PTT), which could be spun into a fiber having functional properties similar to nylon used in rug and clothing textile applications. DuPont remains in the PTT business with its Sorona® product line, while Shell Oil subsequently exited the businesses for both PDO and PTT (Corterra®) fiber. Shell produced PDO via the hydroformylation of ethylene oxide. PDO can also be made via the hydration of acrolein, followed by hydrogenation (Degussa technology), but this route has not been commercialized. By producing feedstock PDO from low-cost corn sugar via a malonic acid intermediate, DuPont believes that its total manufacturing cost is well below that of crude oil-derived feedstocks required to make comparable-performing products.

Due to its production from low-cost biomass, rather than conventional petrochemical feedstocks, Cerenol provides DuPont the opportunity to market a polyurethane feedstock that claims to be produced entirely from renewable resources, while affording the opportunity for DuPont to improve process and product technology resulting in producing Cerenol at a cost that is substantially below the cost to produce competing PEGs that depend upon conventional feedstocks (propylene) and conventional process technology. The polyols are made by via mild polycondensation (USPA 20120277478 A1, 1-Nov-2012) using an acid catalyst (usually sulfuric acid) at between 120–180°C under an inert nitrogen reactor blanket. The reaction products are distilled to remove unreacted monomer feedstock, oligomers, water, and acid. Molecular weight ranges between 500 and 3,000 for commercial-grade products.

DuPont’s commercial PDO plant with Tate & Lyle started up in 2006 and is located in Loudon, Tennessee, USA. Nameplate PDO capacity is 140 kty. The PDO is shipped to DuPont’s First Mississippi subsidiary (Pascagoula, Mississippi, USA) and to Ontario, Canada, for polymerization to Cerenol. Cerenol competes with other polyether glycols produced by Dow Chemical, Bayer, BASF, Huntsman, and Shell Chemicals. The conventional polyether polyol business has an annual global consumption of approximately 6 million metric tons, with demand increasing by 5% per year. We have prepared in this review a Class-3 process design and the corresponding production economics based on our understanding of the DuPont process for a world-class (160 kty) Cerenol homopolymer manufacturing facility.
Contents

Introduction.. 1
Cerenol molecular structure and reaction stoichiometry ... 1
Bio-based polyols.. 2
Cerenol performance properties.. 3
US Cerenol foundation patents ... 4
Early Cerenol patent application disclosures .. 4
Commercial background of DuPont with PDO .. 5
Bio-based polyester polyols .. 6
Conventional polyether polyols .. 6
 PTMEG polyester polyol.. 7
Biodegradability.. 8
Cerenol physical properties .. 9
Cerenol chemical properties .. 9
DuPont Hytrel® RS thermoplastic elastomers .. 10
DuPont Imron® polyurethane enamels.. 10
DuPont Susterra® 1,3-propanediol physical properties.. 11
DuPont process for making Cerenol polyols ... 13
Color body removal from PDO ... 14
Cerenol design basis ... 14
 Product information .. 14
 Plant information .. 15
Scope of project.. 15
Engineering design standards ... 16
Materials of construction ... 16
ISBL tankage ... 16
Owner’s philosophy .. 16
Process description ... 16
 Input/output diagram .. 16
Feedstock ... 17
 Feedstock receipt ... 19
 Block flow diagram .. 19
PDO pretreatment ... 20
Polycondensation reaction design ... 20
Crude Cerenol contaminant removal .. 22
Vacuum distillation ... 23
Activated carbon filtration .. 24
Material balance .. 24
Equipment list with duty specifications ... 27
Itemized capital cost estimate .. 29
Total fixed capital cost estimate .. 32
Contents (concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable unit production cost estimate for Cerenol</td>
<td>34</td>
</tr>
<tr>
<td>Total production cost estimate for Cerenol</td>
<td>34</td>
</tr>
<tr>
<td>Conclusions</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>
Figures

1 Converting glucose to PDO using biochemistry ... 1
2 Cerenol polyol molecular structure .. 1
3 Cerenol polyol reaction stoichiometry .. 2
4 Molecular structure of polytrimethylene terephthalate ... 2
5 University of Utrecht estimate of bio-based polymer consumption 3
6 Davy process for PDO from ethylene oxide .. 6
7 Structure of conventional polyether polyols ... 7
8 Thermal stability of Cerenol and PTMEG in air ... 8
9 Cerenol biodegradability results ... 8
10 Cerenol molecular structures .. 9
11 Block copolymer .. 10
12 Durability of Cerenol containing clear automotive coatings ... 11
13 Freezing point depression effect of PDO in water .. 13
14 Cerenol input/output diagram .. 17
15 Oxetane molecular structure ... 17
16 Cerenol laboratory production apparatus .. 18
17 Process block flow diagram ... 20
18 DuPont USP 7074968 for countercurrent reactor design .. 21
19 Novasep alkaline (ammonium) ion exchange resin ... 23
20 Cerenol from 1,3-propanediol ... 43
Tables

1. Cerenol fundamental US patents ... 4
2. US patents referencing Shell’s PDO process technology 5
3. Physical properties of Cerenol grades .. 9
4. Properties of adipate esters from DuPont PDO ... 11
5. Reagent-grade 1,3-propanediol physical properties 12
6. DuPont Susterra® PDO physical properties .. 12
7. DuPont claimed benefits for using Susterra® PDO 13
8. Cerenol H2000 physical properties .. 15
9. Oxetane physical properties .. 17
10. Cerenol design basis .. 18
11. Stream-by-stream material balance (kg/hr) .. 25
12. Tagged process equipment list with duty specifications 27
13. Itemized ISBL capital cost estimate ... 30
14. Total fixed capital cost estimate .. 33
15. Cerenol unit variable cost of production .. 34
16. Cerenol total unit production cost estimate .. 35