ETHANOL PRODUCTION BY CELANESE ACETYL TECHNOLOGY

By
Syed N. Naqvi
(October 2011)

ABSTRACT

This Review presents a techno-economic evaluation of an ethanol from acetic acid (AA) production process based upon the technical information and data provided by Celanese in its patents on the subject. The design presented herein may not be an exact construct of the actual commercial process of Celanese, known as TCX™ technology. We firmly believe, however, that our presented process design and economics are a reasonably good simulation of the actual process, and the two should be well within the marginal boundary of errors.

The process essentially consists of hydrogenating vaporized acetic acid in a fixed-bed reactor containing a silica-supported platinum-tin-based catalyst. An alkaline metal-based metasilicate compound (possibly CaSiO₃) may also be used as a part of the support as a support modifier. Hydrogenation is carried out at about 482°F (250°C) and 310–320 psia in an excess of H₂. Optimal gas hourly space velocity is equal to 2,500–5,000 hr⁻¹. High H₂ composition in the reactor and elsewhere keeps the process system outside the explosive range. Acetic acid conversion and ethanol selectivity are functions mainly of catalyst composition and process conditions. Generally, maintaining a lower per-pass conversion rate of the acid results in higher ethanol selectivities. Celanese, in its patent application (US 2010/0197485), presents a comprehensive account of the catalysts and process. One typical example (which we selected for our design base) shows an ethanol selectivity of 92% at 24% acid conversion. A major by-product is ethyl acetate (6%). Small amounts of acetaldehyde, CH₃CHO, C₂H₆ and CO₂ are also produced. Excess H₂ and other light gases (CH₄, C₂H₆, CO₂, etc.) are flashed out from the reactor product and recycled to the reactor after recompression. A small amount of the recycle gas is purged prior to recycle to avoid buildup of inerts.

A 92.4 wt% aqueous ethanol product is obtained using a series of distillation towers. Since azeotropic mixtures formation (e.g., a ternary azeotrope of an ethyl acetate-ethanol-water system and a binary azeotrope of an ethanol-water system) is likely in the process, working in the sub-azeotropic distillation zones is beneficial. Despite that, the distillation process is energy-intensive, not to mention the height of a few columns that might contain 65 to 70 plates (per our design). Final ethanol purity of up to 95.0–99.5% is achieved by means of molecular sieves.

Celanese also has a proprietary AA technology commercially known as Acid Optimization technology. This low-water technology is based on a rhodium- and iodide-based catalyst system.

Our cost analysis is based on a plant producing 200,000 metric t/yr of ethanol at a 0.9 stream factor (equal to an installed capacity of 222,000 metric t/yr). The required installed capacity of a dedicated AA plant for the above ethanol capacity is about 337,000 metric t/yr (at a 0.9 stream factor). This AA plant has a TFC of $150 million, producing acid at a cost of $0.23/lb including a 25% pre-tax ROI. Methanol used to make the acetic acid is produced from coal-derived syngas. Cost estimates, details thereof and relevant assumptions are provided in this Review.
ETHANOL PRODUCTION BY CELANESE ACETYL TECHNOLOGY

by Syed N. Naqvi

October 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

COMMERCIAL OVERVIEW.. 1
TECHNOLOGY OVERVIEW.. 2
Technical Review .. 3
 Catalyst and Catalyst Support ... 3
Catalyst Life .. 5
Acetic Acid Conversion ... 5
Ethanol Selectivity ... 7
Reactors ... 7
Reaction Conditions/Parameters ... 8
Carrier Gas .. 9
PROCESS DESCRIPTION .. 9
Section 100—Ethanol Production Section .. 9
PROCESS DISCUSSION .. 16
Catalyst System ... 16
 Acid Hydrogenation Reactor .. 16
 Carrier Gas .. 17
Product Separation/Recovery ... 17
Process Heat Transfer Medium .. 18
Materials of Construction ... 18
Process Waste Effluents ... 18
Process Design Optimization .. 18
COST ESTIMATES ... 22
Fixed-Capital Costs .. 22
Production Costs .. 22
Economics Discussion .. 23
CITED REFERENCES .. 29
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethanol Production Based on Celanese Acetyl Technology Process Flow Diagram</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Selectivity of Platinum/Tin Catalyst</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Productivity of Platinum/Tin Catalyst</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Acetic Acid Conversion for Different Platinum/Tin Molar Ratios</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Effect of Temperature on Acetic Acid Conversion and Ethanol Productivity</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Net Production Cost and Product Value of Ethanol as a Function of Acetic</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Acid Price For Base-Capacity Plant</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Product Value of Ethanol as a Function of Plant Operating Level and Plant</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
</tr>
</tbody>
</table>
TABLES

1 Consumption of Ethanol by Major Region .. 1
2 Acetic Acid Conversion and Ethanol Selectivity ... 6
3 Ethanol Production by Celanese Acetyl Technology Design Bases 12
4 Ethanol Production by Celanese Acetyl Technology Stream Flows 14
5 Ethanol Production by Celanese Acetyl Technology Major Equipment 19
6 Ethanol Production Based on Celanese Acetyl Technology Utilities Summary ... 21
7 Comparative Overall Economics of Ethanol Production from Different Raw Materials ... 24
8 Ethanol Production Based on Celanese Acetyl Technology Total Capital Investment ... 25
9 Ethanol Production Based on Celanese Acetyl Technology Production Costs 26