ON-PURPOSE BUTADIENE PRODUCTION

By

Richard Nielsen

with a Contribution by Russell Heinen

(June 2011)

ABSTRACT

1,3-Butadiene is currently almost entirely produced as a by-product of ethylene steam cracking of naphtha or gas oil feedstocks. Some butadiene is recovered from olefinic refinery gases, mainly from the fluid catalytic cracker. Butadiene is recovered in the ethylene cracker in the crude C_4 fraction. The production of butadiene is dependent upon the feedstock cracked, operating rate and severity of cracking. In high severity naphtha cracking, the C_4 fraction is about 9 wt% of the cracked products and contains 45–50 wt% butadiene. The small amount produced by cracking light feedstocks is not economically recoverable and these units usually do not have butadiene extraction equipment.

A switch to lighter feedstocks has reduced the amount of butadiene available from ethylene cracking and presented a foreseeable market demand for on-purpose butadiene. In 2012, at least two butadiene plants are expected to start up in India with 11 more projects scheduled to start-up in the next five years.

As our primary objective, we extensively reviewed proven or potential technologies for producing 1,3-butadiene, whether commercial or in the research or development stage, with emphasis on developments since 1990. Today, there is interest in producing butadiene from renewable resources such as ethanol, which was a major feedstock before the development and commercialization of petroleum-based processes, mainly during World War II. Since catalysis is a very major contributor to the successful production of butadiene, the catalyst literature is reviewed.

The two main processes, the Houdry Catadiene process and the Texas Petrochemical Corporation Oxo-D process, are described and discussed in greater detail. These two processes have demonstrated the most commercial success historically. Process economics for producing 100,000 mt/year of 1,3-butadiene from n-butane via these two processes, combined with extractive distillation purification, are updated based on PEP Reports 35A1 and 35B plus PEP Review 2002-12.
ON-PURPOSE BUTADIENE PRODUCTION

by Richard Nielsen
with a Contribution by Russell Heinen

June 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

INTRODUCTION .. 1
CONCLUSIONS .. 4
SUMMARY .. 4
INDUSTRY STATUS ... 7
Demand .. 7
Supply ... 9
Prices ... 10
Specifications .. 11
TECHNOLOGY REVIEW .. 13
Chemistry .. 14
 Reaction Equilibrium ... 16
 Kinetics .. 18
 Crude Butadiene .. 20
Commercial Processes ... 22
 Dehydrogenation to Butadiene ... 23
 Houdry (Catadiene) ... 24
 Dow .. 25
 Shell ... 26
 Phillips Butane Dehydrogenation ... 26
 Phillips Butene Dehydrogenation ... 27
 Dehydrogenation to n-Butenes .. 28
 Snamprogetti-Yarsintez .. 28
 Snamprogetti (Research) .. 29
 Linde-BASF ... 30
 Uhde STAR ... 30
 UOP Oleflex ... 31
 Selective Hydrogen Combustion ... 32
 Uhde (Research) ... 33
 Sunoco, Inc. (R&M) (Research) .. 33
 Oxidative Dehydrogenation .. 34
CONTENTS (Continued)

PetroTex Oxo-D ... 35
Phillips O-X-D ... 36
SK Energy (Developmental) .. 36
Mitsubishi (Developmental) .. 38
BP (Developmental) .. 40
Nippon Zeon (Developmental) ... 40
Saipem, S.p.A. (Research) ... 40
Oxidative-Halo-Dehydrogenation .. 40

Renewable Feedstock-Based ... 41
Ethanol .. 41
Butanol (Developmental) ... 43
Starch ... 43
Methanol from Biomass (Developmental) 44

Acetylene-Based .. 44
Four-Step (Aldol) Process ... 44
Reppe Process ... 44

Other Developmental Processes ... 44
Membrane Processes .. 44
Monolith Catalyst Process .. 45
Rapid Pressure Swing Reaction Process 45

Process Patents .. 45
Discussion ... 47
Comparison of Non-Oxidative Dehydrogenation Processes 47

CATALYSIS LITERATURE REVIEW .. 52
Bismuth Molybdenum Catalysts ... 52
Ferrite Catalysts ... 53
Pyrophosphate Catalysts ... 54
Vanadium Catalysts ... 54
Precious Metal Catalysts ... 54
Other Catalysts .. 55
CONTENTS (Concluded)

CITED REFERENCES .. 82

Literature ... 82

Patents .. 97

SRI Consulting Process Economics Program Publications 104

Process Flow Diagrams .. 104
FIGURES

1. Typical Steam Cracker C₄ Flow to Produce Crude Butadiene.......................... 2
2. Typical Extractive Distillation Butadiene Recovery from Crude C₄s and Purification .. 3
3. Global Consumption Growth from 2010–2025 Allocated by End-Use 8
4. U.S. Gulf Coast Butadiene and Butane Price History 11
5. Reaction Network for Non-Oxidative Dehydrogenation of n-Butane 14
6. Equilibrium Conversion of Light Alkanes at 1 Atmosphere 15
7. Oxidative Dehydrogenation of n-Butane Reaction Scheme 15
8. Simplified Houdry Process ... 24
9. Lummus Catadiene Process Schematic.. 25
10. Phillips Two-Stage Butane Dehydrogenation Process 27
11. Snamprogetti Fluid Bed Process ... 29
13. UOP Oleflex Process .. 31
14. UOP Oleflex Catalyst Regeneration ... 32
15. PetroTex (TPC) Oxo-D Simplified Process .. 35
16. Phillips O-X-D Simplified Flowsheet ... 36
17. Plant Cash Costs .. 80
18. On-Purpose Butadiene Plant Cash Margins .. 81
20. TPC Oxo-D Process Process Flow Diagram .. 107
TABLES

1. Typical Crude Refinery C₄ Stream ... 1
2. Butadiene Content from Steam Cracking Various Feedstocks 2
3. Comparison of Oxidative and Non-Oxidative Dehydrogenation 5
4. Dual Bed Technology Improves Conversion of n-Butene Isomers 6
5. Regional Forecast Consumption Growth Rates of 1,3-Butadiene, 2010–2025 8
6. Distribution of Butadiene Capacity .. 9
7. Expansion of Butadiene Capacity from 2009 to 2019 .. 10
8. Example of a 1,3-Butadiene Product Specification .. 12
9. Typical Specifications of Butadiene ... 13
10. Conversion of n-Butene Isomers Depends upon the Catalyst 16
11. Reaction Equilibrium of n-Butane, Butenes and Butadiene 17
12. Chemical Reactions for the Oxidative Dehydrogenation of n-Butane to Butene and Butadiene ... 19
13. Rates of Formation Equations ... 20
14. Example Crude Butadiene Stream Analysis .. 21
15. Normal Boiling Points of C₃ and C₄ Hydrocarbons ... 22
16. Binary Azeotropes of 1,3-Butadiene and of Other C₄ Hydrocarbons 22
17. Typical Raw C₄ Refinery Fraction Composition ... 23
18. Butene Dehydrogenation Catalyst Performance ... 28
19. Dual Bed Technology Improves Conversion of n-Butene Isomers 37
20. Characterization of an Early MoBiFeSi Composite Catalyst 38
21. Process Patents ... 46
22. Separation/Purification Patents ... 47
24. Comparison of Oxidative and Non-Oxidative Dehydrogenation 48
25. Comparison of Non-Oxidative Dehydrogenation Processes 49
26. Comparison of Oxidative Dehydrogenation Processes 50
27. Summary of n-Butene Processes .. 51
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table No</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Non-Oxidative Dehydrogenation Catalysts</td>
<td>55</td>
</tr>
<tr>
<td>29</td>
<td>Oxidative Dehydrogenation Catalysts</td>
<td>56</td>
</tr>
<tr>
<td>30</td>
<td>Patents on Production of Butenes</td>
<td>58</td>
</tr>
<tr>
<td>31</td>
<td>Oxydehydrogenation Catalyst Patents</td>
<td>59</td>
</tr>
<tr>
<td>32</td>
<td>Dehydrogenation/Other Catalyst Patents</td>
<td>59</td>
</tr>
<tr>
<td>33</td>
<td>Total Feedstock Composition</td>
<td>61</td>
</tr>
<tr>
<td>34</td>
<td>Chrome-Alumina Catalyst Typical Properties</td>
<td>62</td>
</tr>
<tr>
<td>35</td>
<td>Reactor Effluent Composition</td>
<td>63</td>
</tr>
<tr>
<td>36</td>
<td>Fresh C4 Feedstock Composition</td>
<td>65</td>
</tr>
<tr>
<td>37</td>
<td>Oxo-D Process Maximum Fresh Feed Impurities</td>
<td>66</td>
</tr>
<tr>
<td>38</td>
<td>Oxo-D Process Crude Butadiene Composition</td>
<td>67</td>
</tr>
<tr>
<td>39</td>
<td>PEP Cost Sub-Indices</td>
<td>70</td>
</tr>
<tr>
<td>40</td>
<td>1,3-Butadiene, Case 1 Total Capital Investment</td>
<td>71</td>
</tr>
<tr>
<td>41</td>
<td>1,3-Butadiene, Case 2 Total Capital Investment</td>
<td>73</td>
</tr>
<tr>
<td>42</td>
<td>1,3-Butadiene, Case 1 Production Costs</td>
<td>75</td>
</tr>
<tr>
<td>43</td>
<td>1,3-Butadiene, Case 2 Production Costs</td>
<td>78</td>
</tr>
</tbody>
</table>