Abstract
Process Economics Program Report 7D
CAPROLACTAM UPDATE
(October 2011)

This report is an update of Process Economics Program report 41B Caprolactam and Nylon 6. The capacity and economics for the process of caprolactam production from cyclohexane by nitric oxide hydrogenation have been updated in this report.

The updated process for caprolactam production from cyclohexane by nitric oxide hydrogenation using BASF’s hydroxylammonium ammonium sulfate oximation (HSO) technology is then compared with another process route, DSM’s caprolactam production from phenol by hydroxylamine phosphate oxime (HPO) technology.

The main focus of this report is an evaluation of the techno-economics for these two process routes for the production of caprolactam, with a base case production capacity of 618 million lb/yr, and a discussion of the impact of raw material pricing on product value, and the feasibility of plant construction in the U.S. Gulf Coast region.

The technology review section of the report covers new developments with Beckmann rearrangement.
CAPROLACTAM UPDATE

by Dipti Dave
with Contributions by Ron Smith

October 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program's reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client's use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client's use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

ENICHEM AMMONOXIMATION PROCESS... 4-7
Conventional Liquid Phase Beckmann Rearrangement 4-8
DEVELOPMENTS OF CAPROLACTAM SYNTHESIS WITHOUT
CYCLOHEXANONE OXIME AS AN INTERMEDIATE ... 4-10
SNIA Viscosa Process .. 4-10
UCC Process.. 4-11
TechniChem Process .. 4-12
BP Chemical Process .. 4-12
BACKGROUND BECKMANN REARRANGEMENT .. 4-13
Liquid Phase Rearrangement Process .. 4-13
Modified Neutralization Processes .. 4-14
Solid Acid Catalysts ... 4-14
Vapor Phase Rearrangement ... 4-15
Feed Diluents .. 4-18
Catalysts .. 4-18
Environmental Issues .. 4-19
MORE RECENT DEVELOPMENTS WITH BECKMANN REARRANGEMENT 4-19
Vapor Phase Beckmann Rearrangement Sumitomo Developed Catalyst 4-19
Noncatalytic Beckmann Rearrangement .. 4-20
High Silica MFI Zeolite as Catalyst for Vapor Beckmann Rearrangement 4-21
Detemplation of [B]MFI Zeolite Crystals .. 4-22
Beckmann Rearrangement over Molecular Sieves ... 4-23
Method for Producing Pentasil-Type Zeolite Sieves ... 4-23
Process to Regenerate Zeolite Catalyst .. 4-25
DSM Process for Preparing Caprolactam ... 4-27
Asahi Process for Vapor Phase Rearrangement Using Solid Acid Catalyst 4-31

5 CAPROLACTAM FROM CYCLOHEXANE BY NITRIC OXIDE
HYDROGENATION.. 5-1
CONTENTS (Continued)

PROCESS DESCRIPTION ... 5-1
CHEMISTRY .. 5-1
MAIN REACTIONS ... 5-2
Process Chemistry ... 5-2
Chemistry Beckmann Rearrangement ... 5-5
BASIS FOR DESIGN AND EVALUATION .. 5-5
Design References ... 5-6
Process Discussion ... 5-9
Section 100—Cyclohexane Oxidation ... 5-9
Section 200—Nitric Oxide Hydrogenation 5-9
Section 300—Cyclohexanone Oximation 5-9
Section 400—Rearrangement and Purification 5-10
Section 500—Ammonium Sulfate Recovery 5-10
Offsite Storage .. 5-10
Environmental ... 5-11
PROCESS DESCRIPTION ... 5-13
Section 100—Cyclohexane Oxidation ... 5-13
Section 200—Nitric Oxide Hydrogenation 5-14
Section 300—Cyclohexanone Oximation 5-15
Section 400—Rearrangement and Purification 5-16
Section 500—Ammonium Sulfate Recovery 5-17
STREAM FLOWS .. 5-17
COST ESTIMATES .. 5-32
Fixed-Capital Costs ... 5-32
Production Costs .. 5-32
CONCLUSION .. 5-33

6 ECONOMICS FOR CAPROLACTAM FROM PHENOL BY HYDROXYLAMINE PHOSPHATE OXIME PROCESS ... 6-1
FIGURES

1.1 Commercial Routes for Caprolactam Production .. 1-2
2.1 Commercial Routes for Caprolactam Production .. 2-4
2.2 Caprolactam from Cyclohexane by Nitric Oxide Hydrogenation Capital
Investment by Plant Section .. 2-9
2.3 Caprolactam from Phenol by HydroXylamine Phosphate Oxime Capital
Investment by Plant Section .. 2-9
2.4 Cyclohexane Price versus Caprolactam Product Value .. 2-13
2.5 Phenol Price versus Caprolactam Product Value ... 2-13
2.6 Raw Material Price Based on 10-Year Historical Average Price Ratio of
Phenol to Cyclohexane ... 2-15
2.7 Raw Material Price Based on 5-Year Historical Average Price Ratio of Phenol
to Cyclohexane ... 2-16
4.1 Commercial Routes for Caprolactam Production ... 4-4
4.2 BASF Vapor Phase Process Diagram Oxime Rearrangement 4-16
4.3 Sumitomo Chemical Vapor Phase Beckmann Rearrangement 4-19
4.4 Zeolite Primary Particle Shape .. 4-25
4.5 Three-Stage Beckmann Rearrangement .. 4-28
4.6 Mixing Device ... 4-29
4.7 Process Scheme Preparation of Cyclohexanone Oxime 4-30
4.8 Case 5 Comparison Cyclohexanone Oxime: Conversion % versus Reaction Time ... 4-35
4.9 Case 5 Comparison Caprolactam: Selectivity % versus Reaction Time 4-36
4.10 Case 6 Comparison Cyclohexanone Oxime: Conversion % versus Reaction Time ... 4-37
4.11 Case 6 Comparison Caprolactam: Selectivity % versus Reaction Time 4-38
5.1 Caprolactam from Cyclohexane by Nitric Oxide Hydrogenation
Process Flow Diagram .. E-3
6.1 Caprolactam from Phenol by Hydroxylamine Oxime Phosphate Process
(HPO)
Block Flow Diagram... 6-3
TABLES

1.1 Physical Properties of Caprolactam ... 1-3
2.1 Regional Caprolactam Production Forecast for 2010–2015 2-1
2.2 Total Caprolactam Global Capacity for 2010 .. 2-2
2.3 Production of Caprolactam and Demand Growth Rate for Major Exporting
 Countries .. 2-3
2.4 Operating Rate by World Region for 2010 ... 2-3
2.5 Caprolactam (CAPM) Process via Cyclohexanone Oxime
 Economic Comparison .. 2-11
2.6 Product Value Cost Comparison for Production Scale .. 2-12
3.1 Regional Caprolactam Production Forecast for 2010–2015 3-1
3.2 Production of Caprolactam and Growth Rate for Major Exporting Countries ... 3-2
3.3 Total Caprolactam Global Capacity for 2010 ... 3-3
3.4 U.S. Producers of Caprolactam .. 3-4
3.5 Mexican Producer of Caprolactam .. 3-5
3.6 Central and South American Producers of Caprolactam 3-5
3.7 Western European Producers of Caprolactam .. 3-6
3.8 Central and Eastern European Producers of Caprolactam 3-7
3.9 Japanese Producers of Caprolactam .. 3-8
3.10 Other Asian Producers of Caprolactam ... 3-9
3.11 Caprolactam Operating Rates by World Region for 2010 3-10
4.1 Oxime Rearrangement of Vapor Phase Process ... 4-17
4.2 Conversion and Selectivity Results from a Regenerated Zeolite Catalyst 4-27
4.3 Results from the DSM experiments .. 4-31
5.1 Reaction Equipment Items with Name and Section Number 5-2
5.2 Cyclohexane Oxidation Reactions ... 5-3
5.3 Decomposition Reactions ... 5-3
5.4 Saponification Reactions .. 5-3
5.5 Dehydrogenation Reactions .. 5-4
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Catalytic Oxidation of Ammonia Reactions</td>
<td>5-4</td>
</tr>
<tr>
<td>5.7</td>
<td>Process Reactions</td>
<td>5-4</td>
</tr>
<tr>
<td>5.8</td>
<td>Hydroxylamine Syntheses Reactions</td>
<td>5-4</td>
</tr>
<tr>
<td>5.9</td>
<td>Ammonium Sulfate Decomposition Reaction</td>
<td>5-5</td>
</tr>
<tr>
<td>5.10</td>
<td>Cyclohexanone Oxime Reactions</td>
<td>5-5</td>
</tr>
<tr>
<td>5.11</td>
<td>Process Sections</td>
<td>5-6</td>
</tr>
<tr>
<td>5.12</td>
<td>Caprolactam from Cyclohexane by Nitric Oxide Hydrogenation Design Basis and Assumptions</td>
<td>5-7</td>
</tr>
<tr>
<td>5.13</td>
<td>Process Waste Streams</td>
<td>5-12</td>
</tr>
<tr>
<td>5.14</td>
<td>Caprolactam from Cyclohexane BY Nitric Oxide Hydrogenation Stream flows</td>
<td>5-18</td>
</tr>
<tr>
<td>5.15</td>
<td>Relation between Base Capacity and Product Value</td>
<td>5-33</td>
</tr>
<tr>
<td>5.16</td>
<td>Caprolactam from Cyclohexane Nitric Oxide Hydrogenation Total Capital Investment</td>
<td>5-34</td>
</tr>
<tr>
<td>5.17</td>
<td>Caprolactam from Cyclohexane Nitric Oxide Hydrogenation Capital Investment by Section</td>
<td>5-35</td>
</tr>
<tr>
<td>5.18</td>
<td>Caprolactam from Cyclohexane Nitric Oxide Hydrogenation Production Costs</td>
<td>5-37</td>
</tr>
<tr>
<td>5.19</td>
<td>Caprolactam from Cyclohexane Nitric Oxide Hydrogenation Utilities Summary</td>
<td>5-39</td>
</tr>
<tr>
<td>5.20</td>
<td>Caprolactam from Cyclohexane Nitric Oxide Hydrogenation Major Equipment</td>
<td>5-40</td>
</tr>
<tr>
<td>6.1</td>
<td>Relation between Base Capacity and Product Value</td>
<td>6-4</td>
</tr>
<tr>
<td>6.2</td>
<td>Caprolactam from Phenol by Hydroxylamine Phosphate Oxime Process Total Capital Investment</td>
<td>6-6</td>
</tr>
<tr>
<td>6.3</td>
<td>Caprolactam from Phenol by Hydroxylamine Phosphate Oxime Process Capital Investment by Section</td>
<td>6-7</td>
</tr>
<tr>
<td>6.4</td>
<td>Caprolactam from Phenol by Hydroxylamine Phosphate Oxime Process Production Costs</td>
<td>6-9</td>
</tr>
<tr>
<td>6.5</td>
<td>Caprolactam from Phenol by Hydroxylamine Phosphate Oxime Process Utilities Summary</td>
<td>6-11</td>
</tr>
</tbody>
</table>