IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition, the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
PEP Report 62B

Eco-Friendly Plasticizers

By Jamie Lacson

December 2014

Abstract

Plasticizers are organic esters, which is compounded into polymers to facilitate processing, and to improve flexibility and toughness of the final products through internal modification of the polymer morphology. Commercially, about 90% of plasticizer consumption is accounted for by the application for flexible polyvinylchloride (PVC).

There are increasing concerns over the traditional plasticizers like dioctyl phthalate (DOP) on its potential migration out of PVC compounds and release to the environment or human body. The concerns have caused the industry to move towards more eco-friendly plasticizers. The first trend is moving towards higher molecular weight and less migratory phthalates.

PEP Report 62B reviews the technology for producing alternative plasticizers.

- Dioctyl terephthalate (DOTP) from terephthalic acid and 2-ethylhexanol[1]
- Dioctyl adipate (DOA) from 2-ethylhexanol and adipic acid
- Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol[2]
- 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) from catalytic hydrogenation of diisononyl phthalate[3]

PEP last covered vinyl plasticizers in PEP Report 62 (1970). The same processes for the manufacture of diethylhexyl phthalate (DEHP) were updated in PEP Report 62A. PEP report 62B, will review, and analyze technologies for production of some of the abovementioned eco-friendly plasticizers in its usual format, providing information on technology aspects like R&D status, technical review, process description, process design details, economic evaluation of production processes.

This report is beneficial to plasticizer producing companies as well as consumers of plasticizers products for the production of PVC and other plastics.
Contents

1. Introduction ... 12
 Major Plasticizer Types... 13
 Phthalates ... 14
 Specialty Plasticizers ... 15
 Potential Alternatives to DEHP ... 19
 Phthalate alternates .. 19
 Non-phthalate alternates .. 19

2. Summary ... 21
 European Union overview: .. 21
 United States overview .. 21
 Economics Summary ... 22

3. Industry Status ... 28
 Prices ... 39
 Environmental Issues .. 42
 United States .. 42
 Western Europe ... 43
 Classification and Labeling ... 43
 Risk Assessments ... 45
 REACH .. 45

4. Technology Review ... 47
 Plasticizer Theory .. 47
 Lubricity Theory .. 47
 Gel Theory ... 47
 Free Volume Theory ... 48
 Mechanistic Theory ... 49
 Plasticizer Classification ... 49
 Properties of Flexible PVC .. 53
 Manufacturing Process .. 55
 Esterification Reactions .. 59
 Esterification Catalysts .. 61
 Operating Mode ... 69
 Carboxylic Acid Esters .. 69
 Epoxidized Vegetable Oils ... 72
 Phosphate Plasticizers ... 74
 Polymeric Plasticizers ... 76

5. Dioctyl terephthalate(DOTP) from terephthalic acid and 2-ethylhexanol in a continuous process 77

December 2014 iv © 2014 IHS
Tables

Table 1.1: Physical properties of select plasticizers... 20
Table 2.1: Plasticizers production cost summary.. 22
Table 2.2: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol Production costs .. 24
Table 2.3: Dioctyl adipate from 2-ethylhexanol and adipic acid ... 25
Production costs ... 25
Table 2.4: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Production costs .. 26
Table 2.5: 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) by catalytic hydrogenation of DINP Production costs .. 27
Table 3.2: World consumption of plasticizers (thousand metric tons) 32
Table 3.3: Changes in Plant Capacity and Ownership .. 34
Table 3.4: Producers of Select Plasticizers .. 36
Table 3.5: EU Priority Setting for Risk Assessments of Phthalate Plasticizers 43
Table 3.6: EU Classification and Labeling of Phthalate Plasticizers 44
Table 4.1: Commodity Plasticizers ... 54
Table 4.2: Unit Consumption (lb/lb plasticizer) .. 55
Table 4.3: Plasticizer alcohols ... 58
Table 4.4: Composition and boiling points of a various water azeotropes 61
Table 4.5: Titanate Catalysts ... 68
Table 5.1: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol Stream flows 79
Table 5.2: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol Major equipment 80
Table 5.3: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol 82
Utilities summary ... 82
Table 5.4: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol 83
Total capital investment ... 83
Table 5.5: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol Variable costs 85
Table 5.6: Dioctyl terephthalate from terephthalic acid and 2-ethylhexanol Production costs .. 86
Table 6.1: Dioctyl adipate from 2-ethylhexanol and adipic acid Stream flows 90
Table 6.2: Dioctyl adipate from adipic acid and 2-ethylhexyl alcohol Major equipment 93
Table 6.3: Dioctyl adipate from 2-ethylhexanol and adipic acid Utilities summary 94
Table 6.4: Dioctyl adipate from 2-ethylhexanol and adipic acid Total capital investment 96
Table 6.5: Dioctyl adipate from 2-ethylhexanol and adipic acid Capital investment by section 97
Table 6.6: Dioctyl adipate from 2-ethylhexanol and adipic acid Variable costs 99
Table 6.7: Dioctyl adipate from 2-ethylhexanol and adipic acid .. 100
Table 7.1: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Stream flows .. 108
Table 7.2: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Utilities summary .. 110
Table 7.3: Diisononyl phthalate from phthalic anhydride and 2-ethylhexyl alcohol 111
Table 7.4: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Total capital investment .. 113
Table 7.5: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Capital investment by section .. 114
Table 7.6: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Variable costs .. 116
Table 7.7: Diisononyl phthalate (DINP) from esterification of phthalic anhydride with isononyl alcohol Production costs .. 117
Table 8.1: 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) by catalytic hydrogenation of DINP Stream flows .. 125
Table 8.2: 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) by catalytic hydrogenation of DINP Utilities summary .. 126
Table 8.5: 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) by catalytic hydrogenation of DINP Variable costs .. 127
Table 8.6: 1,2-Cyclohexanedicarboxylic acid diisononyl ester (DINCH) by catalytic hydrogenation of DINP Production costs .. 128
Table C.1: Plasticizers and CAS Number ... 151
Table C.2: World Producers of Plasticizers .. 157

Figures

Figure 1.1: Physical Functions of Plasticizers .. 12
Figure 1.2: Phthalates isomeric forms .. 14
Figure 2.1: Production cost summary for DOTP, DOA, DINP and DINCH (cents per pound) 23
Figure 2.2: Production cost summary for DOTP, DOA, DINP and DINCH (U.S. dollars per ton) 23
Figure 3.1: DEHP .. 28
Figure 3.2: DINP’ .. 29
Figure 3.3: DIDP ... 29
Figure 3.4: Plasticizers World Market Size .. 31
Figure 3.5: Plasticizer demand by region .. 33
Figure 3.6: World Plasticizer Producers by Region ... 34
Figure 3.7: USGC feedstock spot prices .. 40
Figure 3.8: Western europe feedstock spot prices ... 41
Figure 3.11: DEHP replacement for plasticizers .. 46
Figure 4.1: Lubricity theory ... 47
Figure 4.2: Gel theory ... 48
Figure 4.3: Free volume theory .. 48
Figure 4.4: Mechanistic theory ... 49
Figure 4.5: Primary plasticizers ... 51
Figure 4.6: Secondary plasticizers .. 52
Figure 4.7: Comparison of linear vs branched ... 53
Figure 4.8: Components of phthalate ester production process ... 57
Figure 4.9: Plasticizer alcohols in plasticizers ... 59
Figure 4.10: Phthalic anhydride with butanol .. 60
Figure 4.11: Reaction rates for synthesis of DEHP with different catalysts at 392°F 64
Figure 4.12: Reaction rates using TIPT at different temperatures .. 65
Figure 4.13: Reaction rate of various catalysts at 428°F ... 66
Figure 4.14: Reaction rates for DINP with various catalysts .. 67
Figure 4.15: Carboxylic acid esterification process schematic ... 71
Figure 4.16: Epoxidation reaction ... 72
Figure 4.17: Epoxidation process schematic .. 74
Figure 4.18: Phosphate esters process scheme ... 75
Figure 5.1: Dioctyl terephthalate(DOTP) ... 77
Figure 5.2: Dioctyl terephthalate investment costs at different capacity ... 84
Figure 5.3: Dioctyl terephthalate product values at different capacity levels and operating rate 87
Figure 5.4: Dioctyl terephthalate production costs breakdown ... 87
Figure 6.1: Dioctyl adipate(DOA) .. 89
Figure 6.2: Dioctyl adipate investment costs at different capacity .. 98
Figure 6.3: Dioctyl adipate product values at different capacity levels and operating rate 101
Figure 6.4: Dioctyl adipate production costs breakdown ... 102
Figure 7.1: Diisononyl phthalate (DINP) .. 104
Figure 7.2: DINP synthesis ... 106
Figure 7.3: Preparation of diisononyl phthalate with TNBT at 392°F and acid catalysts at 302°F......... 107
Figure 7.5: Diisononyl product values at different capacity levels and operating rate 118
Figure 8.1: 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH).. 121
Figure 8.2: DINP conversion to DINCH ... 122
Figure 8.3: DINCH process schematic .. 123
Figure 8.4: Hydrogenation using shell and tube reactor process scheme ... 124
Figure 8.5: 1,2-Cyclohexanedicarboxylic acid diisononyl ester product values at different capacity levels and operating rate ... 129
Figure 8.6: 1,2-Cyclohexanedicarboxylic acid diisononyl ester production costs breakdown 130