LLDPE has established itself as the third major member of the global polyethylene business along with LDPE and HDPE. In 2006, worldwide production of LLDPE reached 18.4 million metric tons, corresponding to 29% of total polyethylene. This report is an update and supplement to the series of Process Economics Program reports on technologies and production costs of linear low-density polyethylene (LLDPE).

In our report, we examined four processes that are practiced commercially. We evaluated a fluidized-bed gas-phase process, two solution processes, and a slurry loop process. The fluidized-bed gas-phase process is based on patents for the UNIPOL™ process using a supported metallocene catalyst to produce hexene-based LLDPE. The two solution processes evaluated were based on NOVA Chemical SCLAIRTECH™ and Advanced SCLAIRTECH™ processes using advanced Ziegler-Natta catalysts to produce octene-based LLDPE. The slurry loop process is based on ChevronPhillips Chemical patents for their process using a metallocene catalyst to produce hexene-based LLDPE. The metallocene catalyst is based on ChevronPhillips Chemical’s activator-support technology.

We evaluated the production economics of one nameplate grade for each process based on single-line production capacities of 400,000 ton/yr. Evaluation of the transition costs is also included. In addition to the process evaluations, this report contains summaries of patents relating to the processes we have covered. The processes were updated based on relevant patents and other public disclosures. Also included is a section on the present status of the LLDPE industry with a list of estimated plant capacities.
LINEAR LOW DENSITY POLYETHYLENE

by SUSAN BELL

August 2008

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

GLOSSARY

1. **INTRODUCTION** ... 1-1

2. **SUMMARY** .. 2-1
 - INDUSTRY STATUS ... 2-1
 - TECHNICAL ASPECTS .. 2-2
 - LLDPE Production by a Solution Process 2-2
 - LLDPE Production by a Gas-Phase Process 2-3
 - LLDPE Production by a Slurry-Phase Process 2-4
 - ECONOMICS .. 2-4
 - Capital Costs ... 2-4

3. **INDUSTRY STATUS** 3-1
 - INTRODUCTION .. 3-1
 - APPLICATIONS .. 3-1
 - MANUFACTURING PROCESSES 3-3
 - CAPACITY AND DEMAND 3-4
 - PRODUCERS ... 3-5

4. **TECHNOLOGY DEVELOPMENT** 4-1
 - INTRODUCTION .. 4-1
 - NOVA CHEMICALS ... 4-1
 - Catalysts ... 4-1
 - Ziegler-Natta Catalysts 4-1
 - Conventional Ziegler-Natta Catalysts 4-1
 - Advanced Ziegler-Natta Catalysts 4-2
 - Singe-Site Catalysts 4-2
 - Process .. 4-5
CONTENTS (Continued)

UNIVATION TECHNOLOGIES .. 4-5
Catalysts ... 4-5
Process ... 4-7
CHEVRON PHILLIPS CHEMICAL COMPANY (CPCHEM) 4-9
Catalysts ... 4-9
Process ... 4-12

5 LLDPE PRODUCTION BY A SOLUTION PROCESS .. 5-1

INTRODUCTION .. 5-1
SOLUTION PROCESSES .. 5-1
Nova Chemicals’ Sclairtech™ and Advanced Sclairtech™ Process 5-2
Dow Chemical’s Dowlex™ Process ... 5-5
Stamicarbon Compact™ Process ... 5-6

ECONOMIC EVALUATION OF LLDPE BY NOVA CHEMICAL’S SCLAIRTECH
PROCESS .. 5-8
Process Description .. 5-8
Section 100 - Feed Treatment & Catalyst Preparation Section 5-13
Section 200 - Polymerization Section .. 5-13
Section 300 - Recovery Section ... 5-13
Section 400 - Recovery Section ... 5-14
Process Discussion .. 5-14

COST ESTIMATES FOR LLDPE PRODUCTION BY A SOLUTION PROCESS SIMILAR TO NOVA CHEMICALS SCLAIRTECH™ PROCESS 5-15
Total Fixed Capital .. 5-15
Production Costs .. 5-15

ECONOMIC EVALUATION OF LLDPE BY NOVA CHEMICAL'S ADVANCED
SCLAIRTECH™ PROCESS ... 5-26
Process Description .. 5-26
Section 100: Feed Treatment & Catalyst Preparation Section 5-31
CONTENTS (Continued)

Section 200: Polymerization Section ... 5-31
Section 300: Recovery Section ... 5-31
Section 400: Recovery Section ... 5-32
Process Discussion ... 5-32

COST ESTIMATES FOR LLDPE PRODUCTION BY A SOLUTION PROCESS
SIMILAR TO NOVA CHEMICALS ADVANCED SCLAIRTECH™ PROCESS 5-35
Total Fixed Capital .. 5-35
Production Costs .. 5-36

COMPARISON OF COST ESTIMATES FOR THE SCLAIRTECH™ AND
ADVANCED SCLAIRTECH™ PROCESSES ... 5-46

6 LLDPE PRODUCTION BY A GAS-PHASE PROCESS 6-1
INTRODUCTION .. 6-1
GAS-PHASE PROCESSES .. 6-1
ECONOMIC EVALUATION OF LLDPE BY UNIVATION UNIPOL PROCESS 6-4
Process Description ... 6-4
 Section 100: Polymerization ... 6-8
 Section 200: Finishing Section ... 6-8
Process Discussion ... 6-9
COST ESTIMATES .. 6-10

7 LLDPE PRODUCTION BY A SLURRY-PHASE PROCESS 7-1
INTRODUCTION .. 7-1
CHEVRON PHILLIPS LOOP SLURRY PE PROCESS 7-1
Background ... 7-1
Process Description ... 7-2
 Section 100 – Feed Preparation and Polymerization 7-8
 Section 200 – Diluent and Polymer Recovery ... 7-8
 Section 300: Finishing Section .. 7-9
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Discussion</td>
<td>7-9</td>
</tr>
<tr>
<td>COST ESTIMATES</td>
<td>7-9</td>
</tr>
<tr>
<td>Metallocene Catalyst Cost Estimation</td>
<td>7-19</td>
</tr>
<tr>
<td>8 TRANSITION COSTS</td>
<td>8-1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>8-1</td>
</tr>
<tr>
<td>GRADE TRANSITION</td>
<td>8-2</td>
</tr>
<tr>
<td>PROCESS</td>
<td>8-3</td>
</tr>
<tr>
<td>LOST PRODUCTION</td>
<td>8-4</td>
</tr>
<tr>
<td>WIDE-SPEC RESIN PRODUCTION</td>
<td>8-5</td>
</tr>
<tr>
<td>PRODUCT INVENTORY</td>
<td>8-5</td>
</tr>
<tr>
<td>TRANSITION COSTS</td>
<td>8-6</td>
</tr>
<tr>
<td>APPENDIX A: PATENT SUMMARY TABLES</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B: DESIGN AND COST BASES</td>
<td>B-1</td>
</tr>
<tr>
<td>APPENDIX C: CITED REFERENCES</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D: PATENT REFERENCES BY COMPANY</td>
<td>D-1</td>
</tr>
<tr>
<td>APPENDIX E: PROCESS FLOW DIAGRAM</td>
<td>E-1</td>
</tr>
</tbody>
</table>
FIGURES

4.1 NOVA Chemicals Single Site Catalysts ... 4-3
4.2 Bis(1-methyl-3-n-butylcyclopentadienyl)-Zirconium Dichloride 4-6
4.3 Bridged Fluorenly-Containing Metallocenes .. 4-10
5.1 Process Schematic of Advanced SCLAIRTECH™ Process 5-4
5.2 Process Schematic of DOWLEX™ Process .. 5-5
5.3 Process Schematic of Compact™ Process .. 5-8
5.4 LLDPE Production by a Solution Process Similar to NOVA Chemicals SCLAIRTECH™ Process .. E-3
5.5 LLDPE Production by a Solution Process Similar to NOVA Chemicals Advanced SCLAIRTECH™ Process ... E-9
5.6 CSTR Dual Shear Mixing Element ... 5-33
5.7 Heat Capacity of Cyclohexane and Methylpentane ... 5-34
6.1 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process . E-13
6.2 Unipol™ Product Discharge System ... 6-10
7.1 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop Process .. E-17
7.2 Production of a Fluorided Silica-Alumina Activator Support E-21
8.1 Grade Change Schematic .. 8-2
8.2 Transition Costs .. 8-7
TABLES

2.1 Manufacturing Capacity by Processes ... 2-2
2.2 Top Ten Swing LLDPE/HDPE Producers (2006) ... 2-2
2.3 Capital Costs ... 2-5
2.4 Production Costs .. 2-6
3.1 End Use Applications, 2006 ... 3-2
3.2 World Demand Growth by Application ... 3-3
3.3 Trade Names of Polyethylene Resins .. 3-3
3.4 Manufacturing Capacity by Processes ... 3-4
3.5 2006 Worldwide LLDPE Supply and Demand .. 3-5
3.6 Annual LLDPE Demand Growth ... 3-5
3.7 Top Twenty Swing LLDPE/HDPE Producers (2006) 3-6
3.8 Producers and Average Annual Swing LLDPE/HDPE Capacities (2006) 3-7
4.1 NOVA Chemicals Patents ... A-3
4.2 Univation Technologies Patents .. A-14
4.3 Slurry Loop Process Patents ... A-24
4.4 NOVA Chemicals’ Single-Site Catalyst Patents .. 4-4
4.5 Estimated Cost of Supported Zirconocene Metallocene Catalyst 4-11
5.1 Major Differences Among Solution Processes ... 5-2
5.2 SCLAIRTECH™ or Advanced SCLAIRTECH™ Plants 5-3
5.3 Dow Chemical DOWLEX™ Plants ... 5-6
5.4 Compact™ Process Licensees .. 5-7
5.5 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Design Bases And Assumptions ... 5-9
5.6 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Stream Flows ... 5-10
5.7 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Major Equipment .. 5-17
TABLES (Continued)

5.8 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Utilities Summary... 5-20

5.9 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Total Capital Investment... 5-21

5.10 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Capital Investment By Section ... 5-22

5.11 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 SCLAIRTECH™ Process
 Production Costs ... 5-24

5.12 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Design Bases And Assumptions ... 5-27

5.13 LDPE Production by a High-Pressure Tubular Process Similar to Sabtec CTR
 Process
 Stream Flows... 5-28

5.14 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Major Equipment ... 5-37

5.15 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Utilities Summary... 5-40

5.16 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Total Capital Investment... 5-41

5.17 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Capital Investment By Section ... 5-42

5.18 LLDPE Production by a Solution Process Similar to NOVA Chemicals
 Advanced SCLAIRTECH™ Process
 Production Costs ... 5-44

6.1 Comparison of Differences Among Several Gas-Phase Polyethylene Processes 6-2

6.2 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
 Design Bases And Assumptions ... 6-5

6.3 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
 Stream Flows... 6-6
TABLES (Continued)

6.4 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
Major Equipment ... 6-12

6.5 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
Utilities Summary ... 6-14

6.6 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
Total Capital Investment .. 6-15

6.7 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
Capital Investment By Section ... 6-16

6.8 LLDPE Production by a Gas-Phase Process Similar to the UNIPOL™ Process
Production Costs ... 6-17

7.1 Announced CPCHEM Slurry Loop Polyethylene Plants 7-1

7.2 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Design Bases And Assumptions .. 7-3

7.3 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Stream Flows ... 7-4

7.4 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Major Equipment .. 7-11

7.5 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Utilities Summary .. 7-14

7.6 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Total Capital Investment .. 7-15

7.7 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Capital Investment By Section .. 7-16

7.8 LLDPE Production by a Slurry Process Similar to the Chevron-Phillips Slurry Loop
Process
Production Costs .. 7-17

7.9 Activator-Support Production
Major Equipment .. 7-20

7.10 Activator-Support Production
Production Costs .. 7-21
TABLES (Concluded)

7.11 Estimated Cost of Metallocene Catalyst System Using Activator-Support Technology for Ethylene Polymerization ... 7-23
7.12 Estimated Cost of Metallocene Catalyst System Using MAO Co-Catalyst for Ethylene Polymerization .. 7-24
7.13 Production of Conventional Supported Metallocene Catalyst Production Costs ... 7-25
8.1 Residence Times .. 8-4
8.2 Estimated Transition Costs .. 8-7
8.3 Comparison of LLDPE Production Costs for 400 kta Plant Capacity with Transition Costs .. 8-8