Abstract

Process Economics Program Report 2I

ETHYLENE GLYCOL

(September 2009)

This ethylene glycol (EG) report is a supplement to three previous Process Economics Program (PEP) reports — PEP Report 2F, Ethylene Oxide & Ethylene Glycol (1997); PEP Report 70B, Ethylene Glycol (1978); and PEP Report 70A, Ethylene Glycol (1975). The report examines research work and technical developments taking place in the ethylene glycol (EG) manufacturing technologies since the issuance of last report in 1997. The evaluation especially includes techno-economic analysis of those EG technologies that were commercialized in the past twelve years.

The following two newly commercialized EG technologies are evaluated:

- Shell OMEGA® (Only MEG Advanced) Technology
- Dow METEOR® (Most Effective Technology for Ethylene Oxide Reactions) Technology

Shell OMEGA® technology is a two-step process in which EG is produced from ethylene oxide (EO) via ethylene carbonate (EC), the latter being produced as an intermediate product. EO, for this process, is produced through the conventional EO technology of Shell, using a proprietary Ag-based, promoted catalyst. Ethylene conversion is 10 to 15% and EO selectivity is 90%. EC is produced from EO using a phosphonium halide catalyst. The overall result of the two-step process is that MEG yield in ethylene glycols product is extremely high (99–99.5%). This is the main advantage of this new technology that it selectively produces MEG and minimizes the production of di-ethylene and tri-ethylene glycols. According to Shell, higher growth rate in MEG demand than for DEG was a major factor for the commercialization of technology.

Our evaluation indicates that Shell technology may give a 15% saving in the total capital investment cost for a $ 400 thousand metric ton/annum MEG plant.

Dow METEOR® technology is a single-step process in which EG is directly produced from EO by a thermal hydrolysis process. EO, for this process, is produced through the conventional EO technology, using a proprietary Ag-based, promoted catalyst. Ethylene conversion is 8 to 13% and EO selectivity is 89%. The overall MEG yield in the ethylene glycols product is about 90 to 93%. The hallmark of the METEOR® technology is that it principally based on a simplified process structure involving fewer process steps, less major equipment, and smaller plot plan as compared to the conventional EG plant of same capacity.

Our evaluation indicates that Dow technology may give an 11% saving in the total capital investment cost for a $ 400 thousand metric ton/annum EG plant.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program's reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client's use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client's use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 COMMERCIAL OVERVIEW... 2-1
 TECHNICAL OVERVIEW... 2-1
 Ethylene Oxide ... 2-2
 Catalyst & Catalyst Support.. 2-3
 Promoters & Additives ... 2-3
 Catalyst Life .. 2-4
 Ethylene Conversion ... 2-4
 EO Selectivity .. 2-5
 EO Catalyst Workrate ... 2-5
 Reactors ... 2-5
 Reaction Conditions/Parameters .. 2-5
 Moderators ... 2-6
 Ballast Gas .. 2-6
 Ethylene Glycols ... 2-6
 Catalyst & Catalyst Support. .. 2-7
 EO Conversion ... 2-8
 EG Selectivity ... 2-8
 Reactors ... 2-8
 Reaction Conditions/Parameters .. 2-8
 EO Carbonylation Catalyst .. 2-9
 EO Conversion ... 2-9
 EC Selectivity ... 2-9
 EC Reaction Conditions ... 2-9
 EC Conversion ... 2-9
 EG Selectivity ... 2-10
 EG Reaction Conditions ... 2-10
 NEW TECHNOLOGIES.. 2-10
CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell High-Efficiency Ethylene Glycol Technology</td>
<td>2-10</td>
</tr>
<tr>
<td>Dow High-Efficiency Ethylene Glycol Technology</td>
<td>2-11</td>
</tr>
<tr>
<td>PROCESS ECONOMICS</td>
<td>2-12</td>
</tr>
<tr>
<td>3 INDUSTRY STATUS</td>
<td>3-1</td>
</tr>
<tr>
<td>CAPACITY, PRODUCTION, AND CONSUMPTION</td>
<td>3-1</td>
</tr>
<tr>
<td>4 TECHNICAL REVIEW</td>
<td>4-1</td>
</tr>
<tr>
<td>ETHYLENE OXIDE</td>
<td>4-2</td>
</tr>
<tr>
<td>Catalyst & Catalyst Support</td>
<td>4-2</td>
</tr>
<tr>
<td>Promoters & Additives</td>
<td>4-6</td>
</tr>
<tr>
<td>Ethylene Conversion</td>
<td>4-7</td>
</tr>
<tr>
<td>EO Selectivity</td>
<td>4-7</td>
</tr>
<tr>
<td>EO Catalyst Work Rate</td>
<td>4-7</td>
</tr>
<tr>
<td>Reactors</td>
<td>4-7</td>
</tr>
<tr>
<td>Reaction Conditions/Parameters</td>
<td>4-8</td>
</tr>
<tr>
<td>Moderators</td>
<td>4-8</td>
</tr>
<tr>
<td>Ballast Gas</td>
<td>4-9</td>
</tr>
<tr>
<td>Ethylene Oxide Properties</td>
<td>4-9</td>
</tr>
<tr>
<td>ETHYLENE GLYCOLS</td>
<td>4-10</td>
</tr>
<tr>
<td>Catalyst & Catalyst Support</td>
<td>4-10</td>
</tr>
<tr>
<td>EO Conversion</td>
<td>4-12</td>
</tr>
<tr>
<td>EG Selectivity</td>
<td>4-12</td>
</tr>
<tr>
<td>Reactors</td>
<td>4-12</td>
</tr>
<tr>
<td>Reaction Conditions/Parameters</td>
<td>4-13</td>
</tr>
<tr>
<td>EO Carbonylation Catalyst</td>
<td>4-13</td>
</tr>
<tr>
<td>EO Conversion</td>
<td>4-14</td>
</tr>
<tr>
<td>EC Selectivity</td>
<td>4-14</td>
</tr>
</tbody>
</table>
CONTENTS (Concluded)

Section 100 - Ethylene Oxide Section ... 6-3
Section 200 - Ethylene Glycol Section ... 6-4
PROCESS DISCUSSION ... 6-14
Ethylene Oxide Section ... 6-14
 Ballast Gas .. 6-14
 Catalyst System .. 6-14
 EO Reactor .. 6-15
 Carbon Dioxide Separation .. 6-15
 EO Absorption .. 6-15
EG Section .. 6-15
 Catalyzed & Non-catalyzed EG Processes .. 6-15
 Reactor & Reactor Conditions .. 6-16
 EG Product Recovery ... 6-16
Material of Construction .. 6-16
Process Waste Effluents ... 6-17
COST ESTIMATES ... 6-21
 Fixed-Capital Costs .. 6-21
 Production Costs ... 6-22

APPENDIX A: PATENT SUMMARY TABLES ... A-1
APPENDIX B: DESIGN AND COST BASES ... B-1
APPENDIX C: CITED REFERENCES ... C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAM .. E-1
FIGURES

5.1 Shell High-Efficiency Ethylene Glycol Process
Process Flow Diagram ... E-3

5.2 Shell High-Efficiency Ethylene Glycol Process:
Net Production Cost and Product Value of EG as a Function of Ethylene Price .. 5-29

5.3 Shell High-Efficiency Ethylene Glycol Process:
Product Value of EG as a Function of Plant Operating Level and Plant Capacity 5-30

6.1 Dow High-Efficiency Ethylene Glycol Process
Process Flow Diagram ... E-7

6.2 Dow High-Efficiency Ethylene Glycol Process:
Net Production Cost and Product Value of EG as a Function of Ethylene Price .. 6-27

6.3 Dow High-Efficiency Ethylene Glycol Process:
Product Value of EG as a Function of Plant Operating Level and
Plant Capacity ... 6-28
TABLES

2.1 Process Economics of Shell's Omega & Dow's Meteor EG Technologies
 Total Capital Investment... 2-14

2.2 Process Economics of Shell's Omega & Dow's Meteor EG Technologies
 Production Costs ... 2-15

2.3 Process Economics of Shell's Omega & Dow's Meteor EG Technologies
 Utilities Summary... 2-16

3.1 Estimated World Supply & Demand for Ethylene Glycol by Region
 Year-End of 2008 .. 3-2

3.2 Estimated World Supply & Demand for Ethylene Glycol by Region
 Estimates for 2013.. 3-3

3.3 Ethylene Glycol Producers .. 3-3

4.1 Carrier Properties ... 4-3

4.2 Carrier Properties ... 4-5

4.3 EO Properties .. 4-9

5.1 Shell High-Efficiency Ethylene Glycol Process
 Design Bases .. 5-6

5.2 Shell High-Efficiency Ethylene Glycol Process
 Stream Flows.. 5-8

5.3 Shell High-Productivity Ethylene Oxide-Ethylene Glycol Process
 Major Equipment .. 5-16

5.4 Shell High-Efficiency Ethylene Glycol Process
 Utility Summary ... 5-24

5.5 Shell High-Efficiency Ethylene Glycol Process
 Total Capital Investment... 5-25

5.6 Shell High-Efficiency Ethylene Glycol Process
 Capital Investment by Section.. 5-26

5.7 Shell High-Efficiency Ethylene Glycol Process
 Production Costs .. 5-27

6.1 Dow High-Efficiency Ethylene Glycol Process
 Design Bases .. 6-6

6.2 Dow High-Efficiency Ethylene Glycol Process
 Stream Flows.. 6-8

6.3 Dow High-Efficiency Ethylene Glycol Process
 Major Equipment .. 6-18
TABLES (Concluded)

6.4 Dow High-Efficiency Ethylene Glycol Process
Utilities Summary.. 6-20

6.5 Dow High-Efficiency Ethylene Glycol Process
Total Capital Investment... 6-23

6.6 Dow High-Efficiency Ethylene Glycol Process
Capital Investment by Section... 6-24

6.7 Dow High-Efficiency Ethylene Glycol Process
Production Costs ... 6-25