PEP Report 297

Light Hydrocarbon and Light Naphtha Utilization

Girish Ballal, Principal Analyst

Abstract

Light hydrocarbon and light naphtha refer to various hydrocarbon streams in the C5–C7 range. These streams originate from a variety of sources in the refinery, ranging from atmospheric distillation to gas plants from various refinery reactors. These hydrocarbon streams may be used to produce chemicals or may be utilized for fuel applications. In a modern refinery, it is imperative to upgrade many of the available light hydrocarbons to heavier components with higher octanes in order to meet the quality specifications on the gasoline pool. Constantly tightening environmental regulations enacted worldwide have prompted the development of sophisticated upgrading technologies in recent years.

With the above in perspective, we present in this report a review and technoeconomic analysis of some of the processes utilizing light hydrocarbons and light naphtha in a refinery setup. The processes analyzed in this report include alkylation and dimerization of olefinic fluidized catalytic cracking (FCC) C4 stream, and isomerization of C7 paraffinic stream. The emphasis is on modern emerging technologies such as solid acid catalyst for alkylation and metal-oxide catalyst for isomerization technology extended to C7 hydrocarbons. The processing capacity for the alkylation and dimerization processes is 10,940 BSD (barrels per stream day) of feed. The isomerization process aimed at the narrow C7 cut has smaller capacity, processing 3,670 BSD of feed.

The production economics assessment in this report is based on a US Gulf Coast location. However, an iPEP Navigator module (an excel-based computer costing model offered by IHS Chemical) is attached with this report to allow a quick calculation of the process economics for three other major regions—Germany, Japan, and China. For every process, the module also allows production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is the independent interpretation by the IHS Chemical Process Economics Program (PEP) of the companies’ commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do however believe that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1 Introduction 7

2 Conclusion 9

3 Executive summary 10
 Commercial overview 10
 Technology overview 10
 Alkylation 11
 Isomerization 11
 Dimerization 12
 Process economics 12
 Summary and conclusions 16

4 Industry status 18
 Sources and uses 18
 Capacities 22
 Top producers 24
 Regulatory issues 26
 Feedstock and by-products 28
 C4-rich streams 28
 Light naphtha 30
 Isobutane 30
 Gasoline 31
 Butane 32

5 Technology review 32
 Octane values 32
 Feedstock 34
 Alkylation 34
 Chemistry 35
 Feedstock 35
 Catalysts 36
 Process 37
 Commercial solid acid–based technologies 39
 Isomerization 40
 Catalysts 40
 Process 43
 Commercial metal oxide–based technologies 47
 Dimerization 47
 Chemistry 48
 Feedstock 49
 Catalysts 49
 Process 50
 Commercial dimerization technologies 52
 Light hydrocarbon aromatization 53
 Catalysts 53
 Process 54
 Commercial aromatization technologies 55
6 AlkyClean™ alkylation process by CB&I/Albemarle/Neste
 Section 100—Alkylation reactors
 Section 200—Product recovery
 Process discussion
 Feedstock
 Reaction and product recovery
 Catalyst
 Process waste effluents
 Materials of construction
 Cost estimates
 Fixed-capital costs
 Production costs

7 IsoMalk-4™ C7 isomerization process by Neftehim
 Section 100—Isomerization reactors
 Section 200—Product recovery section
 Process discussion
 Feedstock
 Product recovery
 Process waste effluents
 Materials of construction
 Cost estimates
 Fixed-capital costs
 Production costs

8 Dimerization process by Saipem
 Section 100—Dimerization section
 Section 200—Hydrogenation section
 Process discussion
 Feedstock
 Reaction and product recovery
 Catalysts
 Process waste effluents
 Materials of construction
 Cost estimates
 Fixed-capital costs
 Production costs

Appendix A—Patent summary table
Appendix B—Design and cost bases
 Design conditions
 Cost bases
 Capital investment
 Production costs
Effect of operating level on production costs

Appendix C—Cited references 120
Appendix D—Patent references by company 125
Appendix E—Process flow diagrams 128

Tables

Table 3.1 Comparison of production economics 13
Table 4.1 Global top alkylate producers 25
Table 4.2 Global top polgas/dimersol producers 26
Table 4.3 Various gasoline properties regulations 27
Table 5.1 Research octane numbers of some hydrocarbons 33
Table 5.2 Compositions of typical C4 streams 34
Table 5.3 Estimated impact of feedstock variation 36
Table 5.4 Comparison of AlkyClean™ with liquid acid technologies 39
Table 5.5 AlkyClean™ comparison for environmental, safety, and waste treatment 39
Table 6.1 Design bases and assumptions (AlkyClean™) 65
Table 6.2 Feed composition (AlkyClean™) 66
Table 6.3 Stream summary (AlkyClean™) 66
Table 6.4 List of major equipment (AlkyClean™) 68
Table 6.5 Utilities summary (AlkyClean™) 69
Table 6.6 Total capital investment (AlkyClean™) 72
Table 6.7 Production costs (AlkyClean™) 73
Table 6.7 Production costs (AlkyClean™) (concluded) 74
Table 6.8 Production costs in metric units (AlkyClean™) 75
Table 7.1 Design bases and assumptions (Ismalk-4™) 77
Table 7.2 Feed composition (Ismalk-4™) 78
Table 7.3 Stream summary (Ismalk-4™) 79
Table 7.4 List of major equipment (Ismalk-4™) 82
Table 7.5 Utilities summary (Ismalk-4™) 83
Table 7.6 Total capital investment (Ismalk-4™) 86
Table 7.7 Production costs (Ismalk-4™) 87
Table 7.8 Production costs in metric units (Ismalk-4) 89
Table 8.1 Design bases and assumptions (Saipem dimerization) 92
Table 8.2 Feed composition (Saipem dimerization) 93
Table 8.3 Stream summary (Saipem dimerization) 93
Table 8.4 Major equipment (Saipem dimerization) 97
Table 8.5 Utilities summary (Saipem dimerization) 98
Table 8.6 Total capital investment (Saipem dimerization) 101
Table 8.7 Production costs (Saipem dimerization) 102
Table 8.8 Production costs in metric units (Saipem dimerization) 104
Table 8.9 Light hydrocarbons and light naphtha patent summary 106

Figures

Figure 3.1 Capital costs comparison 14
Figure 3.2 Capital intensity comparison 14
Figure 3.3 Production cost comparison 15
Figure 3.4 CO₂ emissions comparison 16
Figure 3.5 Water usage comparison 16
Figure 4.1 Butylene production by sources 19
Figure 4.2 Butylene production by geographical regions 19
Figure 4.3 Butylene consumption by end use 21
Figure 4.4 Butylene consumption by geographical regions 21
Figure 4.5 Global production capacities for alkylation, isomerization, and dimerization 22
Figure 4.6 World alkylation capacity by process 22
Figure 4.7 World alkylation capacity by geography 23
Figure 4.8 World polygas/dimersol capacity by process 23
Figure 4.9 World polygas/dimersol capacity by geography 24
Figure 4.10 Crude C₄s (contained butadiene) yearly prices 29
Figure 4.11 Raffinate-1 yearly prices 29
Figure 4.12 Light naphtha yearly prices 30
Figure 4.13 Isobutane yearly prices 30
Figure 4.14 Regular unleaded gasoline yearly prices 31
Figure 4.15 Premium unleaded gasoline yearly prices 31
Figure 4.16 Butane yearly prices 32
Figure 5.1 AlkyClean™ block diagram 37
Figure 5.2 AlkyClean™ catalyst regeneration scheme 38
Figure 5.3 Cs isomers equilibrium 40
Figure 5.4 Cs isomers equilibrium 41
Figure 5.5 C₇ isomers equilibrium 41
Figure 5.6 Operating temperatures for various isomerization catalysts 43
Figure 5.7 Comparison of SI-4 with earlier catalysts 44
Figure 5.8 IsoMalk-4™ block diagram 45
Figure 5.9 Conventional naphtha processing in refinery 46
Figure 5.10 Naphtha processing with IsoMalk-4™ technology 47
Figure 5.11 Saipem dimerization process block diagram 50
Figure 5.12 Water-cooled tubular dimerization reactor 51
Figure 5.13 Dimerization process using catalytic distillation 52
Figure 5.14 Reaction scheme for aromatization of alkanes 54
Figure 6.1 Effect of plant capacity on investment cost (AlkyClean™) 70
Figure 6.2 Effect of plant capacity on production costs (AlkyClean™) 71
Figure 7.1 Effect of plant capacity on investment costs (IsoMalk-4™) 84
Figure 7.2 Effect of plant capacity on production costs (IsoMalk-4™) 85
Figure 8.1 Effect of plant capacity on investment costs (Saipem dimerization) 100
Figure 8.2 Effect of plant capacity on production costs (Saipem dimerization) 100
Figure 9.1 AlkyClean™ alkylation process by CB&I, Albemarle, and Neste 129
Figure 9.2 IsoMalk-4™ C₇ isomerization process by JSC Sie Neftehim/GTC Technology 130
Figure 9.3 C₄ dimerization process by Saipem 131