IHS CHEMICAL

Metallocene Polyalphalpha Olefins (mPAOs)

Process Economics Program Report 296

December 2016

PEP Report 296
Metallocene Polyalphalpha Olefins (mPAOs)

Gajendra Kumar
Principal Analyst

Tony Pavone
Sr. Principal Analyst
Abstract

Polyalpha olefins (PAOs) represent a family of primarily decene-1 oligomers (mostly trimers) that have found wide use as a fully synthetic lubricant base oil component. PAOs provide superior lubricant properties in viscosity, viscosity index, cold cranking capability, emulsion resistance, lower pour point, lubricity, friction reduction, low volatility in use, higher flash temperature, and thermal and oxidative stability. The downside is lower solvency and biodegradation, poorer seal swell, and higher cost. The American Petroleum Institute (API) designates PAO components as Group-4 fully synthetic basestock. Periodic shortages in decene-1 LAO (linear alpha olefin) feedstock availability have forced PAO producers to occasionally blend C₁₀ with both lighter (C₈) and heavier (C₁₂) LAO feedstocks to produce PAO with adequate physical and performance properties. The oligomerization process is not very selective, and produces a reactor product containing LAO dimers, trimers, tetramers, and pentamers, plus unreacted feedstock.

While originally developed to produce fully synthetic basestock for conventional motor oil requiring 4 centistoke (cSt) viscosity, additional product grades with different viscosities have been supplemented with newer PAO components of much higher viscosity (100+ cSt) that have found widespread use as blend stock components in heavy duty gear boxes, transfer cases, and transmissions, such as those found in wind turbine generators.

Given the inherent lack of selectivity in production, newer PAO processes have been commercialized that use metallocene oligomerization catalysts (rather than Lewis acids) to produce reactor products that have a much narrower molecular weight distribution and higher kinematic viscosity (KV), and therefore more precise properties for specific end use applications.

In this design, we present our understanding of the process technology and production economics of metallocene PAO produced by Chevron Phillips, ExxonMobil, and INEOS. We also describe our understanding of the technologies used by Chemtura (acquired by Lanxess in 2016), and Idemitsu. Idemitsu no longer produces PAO for sale as a lubricant base oil, but does sell an A-20 dimer for heat transfer fluid applications in refrigerant service.

KEYWORDS: Polyalphaolefin, PAO, metallocene, mPAO, synthetic lubricant, Group-4
Contents

1 Introduction
- Polyalpha olefins (PAOs)
- PAO physical properties
- Metallocene catalysts
- Benefits for using metallocene catalysts in polyolefin production
- Metallocene PAOs and their properties
- Metallocene PAO end use applications
- Commercially available grades of metallocene PAO

2 Summary
- Background
- PAO physical properties
- Optimum mPAO feedstock
- Metallocene catalysts
- Metallocene PAOs and their properties
- Commercially available grades of metallocene PAOs
- Uses for PAOs and metallocene PAOs as lubricants
- Market drivers for metallocene PAO in lubricant formulations
- New engine oil standards
- Economic advantages for replacing conventional high-viscosity PAO with high-viscosity mPAO
- mPAO integrated product chain
- “Green” or “bio” metallocene PAO
- Synthetic basestock lubricants business
- PAO global demand
- PAO global production capacity
- Major PAO producers
- Improved benefits of metallocene PAO versus conventional PAO
- Availability of LAO feedstock for producing PAO
- Impact of GTL Group-3 basestock on the metallocene PAO business
- Historical development of PAOs
- Basic PAO chemistry
- Chemical reactions
- Oligomerization reaction
- Hydrogenation of PAO to fully saturate the oligomer
- PAO reactor design configurations
- Process economics
- Economics calculation modules for non-US regions

3 Metallocene PAO industry status
- Uses for PAOs and metallocene PAOs as lubricants
- Uses for PAOs and mPAOs in nonlubricant applications
- Market drivers for mPAO in lubricant formulations
- New engine oil standards
- American Petroleum Institute’s (API) classifications for lubricant basestocks
- SAE standards for formulated lubricants by viscosity
- API laboratory and bench tests for formulated engine oil physical and performance properties
SAE-16 low-viscosity engine oil performance standard 38
API CK-4 and FA-4 diesel lubricant categories 38
Proposed ILSAC GF-6 standard 38
Economic advantages for replacing conventional high-viscosity PAO with high-viscosity mPAO 39
mPAO Integrated product chain 39
“Green” or “bio” metallocene PAO 40
Synthetic basestock lubricants business 41
PAO global demand 41
PAO global production capacity 42
Major PAO producers 43
PAO market prices 44
Improved benefits of metallocene PAO versus conventional PAO 44
Availability of LAO feedstock for producing PAO 45
Impact of GTL Group-3 basestock on the metallocene PAO business 48
Physical properties of commercial metallocene PAO grades 48
ExxonMobil mPAO grades 48
Chevron Phillips mPAO grades 49
INEOS mPAO grades 49
Idemitsu mPAO grades 50

4 Chemistry and technology of metallocene PAOs 52
 Historical development of PAOs 52
 Basic PAO chemistry 53
 Chemical reactions 53
 Decene-1 feedstock properties 54
 Boron trifluoride (BF3) properties 55
 Oligomerization reaction 57
 PAO chemical structure 57
 Historical oligomerization catalysts 59
 BF3 environmental, health, and safety considerations 60
 Thermodynamics of the LAO oligomerization reaction 60
 Hydrogenation of PAO to fully saturate the oligomer 61
 Oligomerization reaction variables 61
 PAO reactor design configurations 62
 Recommended materials of construction in BF3 service 62
 BF3 feed system from pressurized tanks 62
 BF3 catalyst recovery methods 63
 Desirable PAO properties 66
 Competing fully synthetic basestocks 66
 Forces affecting the choice of basestocks 67
 Performance comparison of PAO versus GTL lubricant basestocks 68
 Conventional PAO process technology 69
 ExxonMobil’s conventional BF3 catalyzed PAO technology 69
 Post-reaction hydrogenation 71
 Thermal cracking of high-viscosity, high-VI PAO 71
 IHS prior process design basis 71
 PAO grade differentiation by viscosity 73
 Kinetic viscosity of common materials 73
 PAO manufacturing technology summary 74
 Uniroyal metallocene PAO patent 77
 Chevron Phillips metallocene PAO technology 79
 Chevron Phillips commercial position in mPAO 79
 Historical development of CPChem PAO technology 80
 Value proposition for CPChem metallocene PAO 80
 Chevron Phillips mPAO benefits in lithium grease applications 83
 Chevron Phillips US patent estate for metallocene PAO 84
5 Metalocene PAO via Chevron Phillips technology
Chevron Phillips mPAO input/output diagram
Chevron Phillips mPAO block flow diagram 131
Chevron Phillips design basis table 133
Chevron Phillips process flow diagrams and process description 133
Section 100—Oligomerization 133
Section 200—Distillation 135
Section 300—Hydrogenation 137
Process discussion 143
Feedstock and catalyst 143
Reactor selection 144
Products separation 144
Hydrogenation 144
Process waste effluent 145
Materials of construction 145
Cost estimates 147
Fixed capital costs 148
Production costs 148

6 Metallocene PAO via ExxonMobil technology 155
ExxonMobil mPAO input/output diagram 155
ExxonMobil mPAO block flow diagram 155
ExxonMobil design basis table 156
ExxonMobil process flow diagrams and process description 157
Section 100—Feed and catalyst preparation 158
Section 200—Oligomerization 159
Section 300—Low-pressure distillation 160
Section 400—High-vacuum distillation 161
Section 500—Hydrogenation 162
Process discussion 169
Feedstock and catalyst 169
Reactor selection 170
Products separation 170
Hydrogenation 170
Off-sites and miscellaneous package units 170
Process waste effluent 171
Materials of construction 171
Cost estimates 175
Fixed capital costs 175
Production costs 176

7 Metallocene PAO via INEOS technology 183
INEOS mPAO input/output diagram 183
INEOS mPAO block flow diagram 183
INEOS design basis table 184
INEOS process flow diagrams and process description 185
Section 100—Feed and catalyst preparation 186
Section 200—Oligomerization and alkylation 189
Section 300—Low-pressure distillation 192
Section 400—High-vacuum distillation 193
Section 500—Hydrogenation 193
Process discussion 200
Feedstock and catalyst 201
Reactor selection 201
Products separation 201
Hydrogenation 202
Off-sites and miscellaneous package units 202
Process waste effluent 202
Materials of construction 202
Tables

Table 1.1 Forms of fully synthetic lubricant basestocks 13
Table 1.2 Properties of three grades of CPChem metallocene PAOs 18
Table 2.2 Overall comparison of the mPAO process economics—TFC investment for 50,000 mty mPAO plant 29
Table 2.3 Overall comparison of the mPAO process economics—Production cost for 50,000 mty mPAO plant 30
Table 3.1 Lubricant applications of PAO and mPAO 32
Table 3.2 Nonlubricant applications of PAO and mPAO 33
Table 3.3 API lubricant basestock classifications 35
Table 3.4 SAE lubricant viscosity grades 36
Table 3.5 API laboratory and bench test methods for engine oils satisfying SN-RC and ILSAC GF-5 categories 37
Table 3.6 Completed projects in bioethylene and biomonoethylene glycol by Petron Scientech 40
Table 3.7 Major global producers of PAO 43
Table 3.8 Major global producers of PAO (kty) 43
Table 3.9 Estimated market prices for PAO in 2015 44
Table 3.10 Property comparison of Chevron Phillips conventional and metallocene PAOs 45
Table 3.11 Uses for linear alpha olefins by carbon number 47
Table 3.12 Lubricant viscosity characteristics provided by Shell’s GTL plant in Qatar 48
Table 3.13 Properties of ExxonMobil metallocene PAO grades 49
Table 3.14 Properties of Chevron Phillips metallocene PAO grades 49
Table 3.15 Properties of INEOS metallocene PAO grades 50
Table 3.16 Properties of Idemitsu metallocene PAO grades 50
Table 3.17 Physical properties Idemitsu A-20 PAO dimer 51
Table 4.1 Physical properties of decene-1 PAO feedstock 54
Table 4.2 Contaminant levels in Honeywell BF3 product grades 55
Table 4.3 Physical properties of BF3 56
Table 4.4 Desirable fully synthetic basestock properties 66
Table 4.5 Performance of PAO basestock 66
Table 4.6 Comparison of PAO with other fully synthetic basestocks 67
Table 4.7 Migration to lower-viscosity motor oils 68
Table 4.8 Kinematic viscosity of common chemicals 74
Table 4.10 PAO US patent history 77
Table 4.11 CPChem PAO production capacity (thousands of metric tons/yr) 80
Table 4.12 Key CPChem US patents on mPAO 84
Table 4.13 ExxonMobil grades of conventional low-viscosity PAO 90
Table 4.14 ExxonMobil grades of conventional high-viscosity PAO 91
Table 4.15 ExxonMobil grades of SpectraSyn Plus™ low-viscosity PAO 91
Table 4.16 ExxonMobil grades of SpectraSyn Ultra™ PAO 91
Table 4.17 ExxonMobil grades of SpectraSyn Elite™ metallocene PAO 92
Table 4.18 Performance benefits of wind turbine gear oil made with ExxonMobil mPAO 94
Table 4.19 Key ExxonMobil patents on metallocene PAO 96
Table 4.20 Location of INEOS PAO production plants 106
Table 4.21 Product grades of INEOS PAO for lubricant applications 111
Table 4.22 Properties of INEOS metallocene PAO grades 111
Table 4.23 Product grades of INEOS PAO for personal care applications
Table 4.24 Physical specifications of INEOS PAO for personal care applications
Table 4.25 Key INEOS metallocene PAO patents
Table 4.26 PAO properties when produced via alkylation of dimer with C12 over BF3 catalyst (US 6680417)
Table 4.27 Chemtura production of PAO (kty)
Table 4.28 Chemtura Synton® grades of conventional PAO
Table 4.29 Chemtura and predecessor key PAO US patents
Table 4.30 Physical properties of Idemitsu A-20 PAO dimer
Table 5.1 Chevron Phillips mPAO process—Design bases and assumptions
Table 5.2 mPAO production via Chevron Phillips technology—Main stream flows
Table 5.3 mPAO production via Chevron Phillips technology—Major equipment
Table 5.4 mPAO production via Chevron Phillips technology—Utilities summary
Table 5.5 Metallocene PAO via Chevron Phillips technology—Total capital investment
Table 5.6 Metallocene PAO via Chevron Phillips technology—Capital investment by section
Table 5.7 Metallocene PAO via Chevron Phillips technology—Production costs
Table 6.1 ExxonMobil mPAO process—Design bases and assumptions
Table 6.2 mPAO production via ExxonMobil technology—Main stream flows
Table 6.3 mPAO production via ExxonMobil technology—Major equipment
Table 6.4 mPAO production via ExxonMobil technology—Utilities summary
Table 6.5 Metallocene PAO via ExxonMobil technology—Total capital investment
Table 6.6 Metallocene PAO via ExxonMobil technology—Capital investment by section
Table 6.7 Metallocene PAO via ExxonMobil technology—Production costs
Table 7.1 INEOS mPAO process—Design bases and assumptions
Table 7.2 Toluene physical properties
Table 7.3 Toluene key properties dependent upon temperature
Table 7.4 Composition of Chevron Phillips technical grade tetradecene-1
Table 7.5 Physical properties of tetradecene-1
Table 7.6 mPAO production via INEOS technology—Main stream flows
Table 7.7 mPAO production via INEOS technology—Major equipment
Table 7.8 mPAO production via INEOS technology—Utilities summary
Table 7.9 Metallocene PAO via INEOS technology—Total capital investment
Table 7.10 Metallocene PAO via INEOS technology—Capital investment by section
Table 7.11 Metallocene PAO via INEOS technology—Production costs

Figures

Figure 1.1 PAO molecular weight distribution
Figure 1.2 PAO oligomer distribution
Figure 1.3 Structure of metallocene catalyst
Figure 1.4 Combination of metallocene with cocatalyst
Figure 1.5 Structure of metallocene polyolefin catalyst
Figure 1.6 Polymer molecular weight distribution
Figure 1.7 Polymer low density product using metallocene catalysts
Figure 1.8 Viscosity index comparison of CPChem conventional and metallocene PAO grades
Figure 1.9 Pour point comparison of CPChem conventional and metallocene PAO grades
Figure 1.10 Cold temperature viscosity comparison of CPChem conventional and metallocene PAO grades
Figure 1.11 Blended oil pour point comparison of CPChem conventional and metallocene PAO grades
Figure 1.12 Lithium grease performance when incorporating CPChem mPAO
Figure 2.1 Integrated product chain for mPAO
Figure 2.2 Production costs of mPAO production processes in the US Gulf Coast
Figure 3.1 Comb-like molecular structure of PAO and mPAO (US 7129197)
Figure 8.3 Metallocene PAO via INEOS technology—Section 300 (Low-pressure distillation) 272
Figure 8.3 Metallocene PAO via INEOS technology—Section 400 (High-vacuum distillation) 273
Figure 8.3 Metallocene PAO via INEOS technology—Section 500 (Hydrogenation) 274