Iso-C₄ Processes

Richard Nielsen, Sr. Principal Analyst
Anshuman Agrawal, Principal Analyst

Abstract
An oversupply of n-butane is anticipated in North America due to three primary trends: (1) increased natural gas liquids (NGL) production, (2) a lower percentage of n-butane being blended into gasoline, and (3) displacement of n-butane by ethane as steam cracking feedstock for ethylene production. Direct blending of butanes and butylenes into gasoline is limited by vapor pressure and olefin specifications. The surge in production of NGL from tight (shale) oil and gas formations due to the rapid growth of fracking technology for oil and gas production is producing considerably more associated ethane as well as butane. Where possible in North America, inexpensive ethane is already displacing n-butane and naphtha from the feedstock slate of existing ethylene steam crackers. New ethane cracking capacity is planned. US exports of ethane to Western Europe are starting to impact steam cracking there, too. Steam cracking ethane produces only a small amount of butylenes compared to cracking butanes and heavier feedstocks. Although tight oil production may well decline over the next one to two years or so, production is forecasted to then resume increasing.

These trends provide incentives to convert butanes (and n-butenes), mostly consumed indirectly or directly as fuel components, to more valuable products such as iso-C₄s (isobutane and isobutylene) that are intermediates for producing gasoline blending stocks and chemicals. n-Butane is isomerized to isobutane in petroleum refineries when additional isobutane is needed for alkylation. Isobutene is a polymerization feedstock for butyl rubber and polybutenes. It is also a feedstock for methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), isoprene, methacrylic acid, methacrylonitrile, and t-butyl alcohol.

In this PEP Report, we first review the developments in three processes producing on-purpose iso-C₄s—isomerization of n-butane to isobutane, dehydrogenation of isobutane to isobutylene, and isomerization of n-butenes to isobutylene. Process economics are then developed for producing iso-C₄s based on three successful commercial processes—the Butamer™ process for n-butane isomerization, the Catofin® isobutane dehydrogenation process, and the ISOMPLUS® n-butenes skeletal isomerization process.
Contents

1 **Introduction** 8
2 **Conclusions** 10
3 **Summary** 12

Commercial aspects
- **Uses** 12
- **Supply** 13
- **Demand** 14
 - **Fuel demand** 14
 - **Butylenes** 14
 - **Butanes** 14
- **Prices** 15

Technology
- **n-Butane isomerization** 15
- **Isobutane dehydrogenation** 16
- **N-Butenes isomerization** 17

Process economics 18

4 **Industry status** 21

Uses 21
- **Fuel uses** 21
- **Chemical uses** 22

Supply 22
- **Butylenes** 23
- **Butanes** 24

Demand 29
- **Fuel** 31
- **Chemical** 34
 - **Butylenes** 34
 - **Butanes** 36

Specifications 36
- **C₄ stream** 36
- **Butylenes** 38
- **Butanes** 39

Prices 41
- **Mixed C₄s** 41
- **Butanes** 44
- **Butylenes** 46

Capacity 46

5 **Chemistry** 51

Isomerization of n-butane 51
- **Mechanisms** 52
 - **Bi- and monomolecular mechanisms** 53
 - **Dual-nature mechanism** 56
- **Kinetics** 59
- **Catalysts** 59
 - **Catalyst deactivation** 61
 - **Molecular sieves** 61
 - **Mordenite** 61
 - **ZSM-5** 62
 - **MCM-41** 62
 - **SAPO** 63
 - **Sulfated zirconia** 63
 - **Preparation** 66
6 Process review

Butane isomerization
 Butamer process
 Lummus Global process
 Isomalk-3STM process
 Phillips Petroleum process
 Shell
 BP
 Developmental processes

Dehydrogenation
 C3–C4 mixture
 Catofin® process
 Oleflex™ process
 STAR process
 NIIMSK process
n-Butene isomerization process economics 127
7 n-Butene isomerization process economics
Process description 127
Process discussion 133
Cost estimates 135
Capital cost 135
Production cost 136
Profitability 140

Isobutane dehydrogenation process economics 141
8 Isobutane dehydrogenation process economics
Process description 141
Process discussion 150
Capacity 150
Feedstock 150
Reactors 150
Catalyst 152
Product 153
Regeneration 153
Environment 153
Cost estimates 153
Capital cost 154
Production costs 156
Profitability 160

n-Butene skeletal isomerization process economics 161
9 n-Butene skeletal isomerization process economics
Process description 161
Process discussion 165
Cost estimates 166
Capital cost 166
Production costs 167
Profitability 171

Appendix A—Patent summary 172
Appendix B—Design and cost bases 205
Design conditions 206
Cost bases 206
Capital investment 206
Production costs 208
Effect of operating level on production costs 209
Overall estimate confidence rating 209
Appendix C—Cited references 211
Literature 212
Figures

Figure 4.1 Butylenes production by region 23
Figure 4.2 US production of butylenes from steam cracking 24
Figure 4.3 2011 Butanes production by region and source 25
Figure 4.4 US NGL from shale gas/oil 26
Figure 4.5 US NGL production by source 27
Figure 4.6 US isobutane production 27
Figure 4.7 US n-butane production 28
Figure 4.8 US production of n-butane and isobutane purity products 29
Figure 4.9 2013 butylenes consumption by region 30
Figure 4.10 2014 butanes consumption by region 31
Figure 4.11 2013 World butylenes consumption as fuel by region, % 32
Figure 4.12 2013 World butylenes reacted to alkylate 33
Figure 4.13 Global MTBE production by region and feedstock source in 2013 34
Figure 4.14 2013 chemical demand for n-butenes 35
Figure 4.15 2013 chemical demand for isobutylene 35
Figure 4.16 Regional crude C4 price, 2013–14, US$ per metric ton 42
Figure 4.17 Price history of raffinate-1 by region 42
Figure 4.18 Price history of raffinate-2 by region 43
Figure 4.19 North American price spread between raffinate-1 and raffinate-2 history 43
Figure 4.20 Isobutane—n-Butane price spread history 45
Figure 4.21 North American high-purity isobutylene price history 46
Figure 5.1 Isomerization of n-butane 51
Figure 5.2 Bimolecular pathway for n-butane isomerization 53
Figure 5.3 Monomolecular pathway for n-butane isomerization 54
Figure 5.4 Alkylation/dealkylation/rearrangement mechanism for isobutane formation 55
Figure 5.5 Dual-nature mechanism for n-butane isomerization 57
Figure 5.6 Equilibrium of isobutane dehydrogenation at one atm. total pressure 73
Figure 5.7 Possible mechanism for isobutane dehydrogenation over Cr2O3/Al2O3 catalysts 75
Figure 5.8 Equilibrium among C4 olefins 93
Figure 5.9 Reaction pathway for skeletal isomerization of n-butenes including by-product formation 94
Figure 6.1 Original Butamer process simplified flowsheet 107
Figure 6.2 Butamer HOT process flow diagram 108
Figure 6.3 Catofin process® 113
Figure 6.4 Oleflex process 114
Figure 6.5 NIIMSK isobutane dehydrogenation process simplified flow diagram 116
Figure 6.6 Theoretical isobutane conversion as a function of the number of SHC stages 123
Figure 6.7 ISOMPLUS® process 124
Figure 8.2 Isobutane dehydrogenation equilibria as a function of pressure (no added hydrogen) 151
Table 3.1 Summary of process economics of iso-C₄ processes

Table 4.1 US butanes production from shale oil and gas trends, B/D

Table 4.2 US production of NGLs by source (millions of barrels)

Table 4.3 World demand for butylenes and butanes in 2013, MMt

Table 4.4 Typical composition ranges for low 1,3-butadiene C₄ streams

Table 4.5 Raffinate-3 sales specification

Table 4.6 High-purity commercial butene product specifications

Table 4.7 Typical chemically pure isobutylene specifications of one supplier

Table 4.8 Specifications for refinery grade n-butane

Table 4.9 Isobutane specifications of one major supplier

Table 4.10 Composition range of refinery mixed butane-butylene streams

Table 4.11 Regional spot prices for n-butane, $/metric ton

Table 4.12 US NGL price history, $/metric ton

Table 4.13 Isobutane producers

Table 4.14 High-purity isobutylene producers

Table 4.15 High-purity isobutylene capacity by region, MMt

Table 5.1 Catalysts evaluated for n-butane skeletal isomerization

Table 5.2 Sulfated zirconia catalysts evaluated for n-butane isomerization

Table 5.3 Isobutane oxidative dehydrogenation catalysts

Table 5.4 Catalysts for CO₂ oxidative dehydrogenation of isobutane

Table 5.5 Average intrinsic rate parameters for isobutane dehydrogenation to isobutene

Table 5.6 High selectivity, high stability n-butene skeletal isomerization catalysts

Table 5.7 Feedstock properties

Table 5.8 Skeletal isomerization product over ferrierite catalyst

Table 6.1 BIC and butamer processes operating conditions

Table 6.2 Comparison of major commercial isobutane dehydrogenation processes

Table 7.1 n-Butane isomerization process—Design basis and assumptions

Table 7.2 Feed and product compositions

Table 7.3 n-Butane isomerization process—Stream flows

Table 7.4 n-Butane isomerization process—Major equipment

Table 7.5 n-Butane isomerization process—Utilities summary

Table 7.6 n-Butane isomerization process—Total capital investment

Table 7.7 n-Butane isomerization process—Production costs

Table 7.8 Effect of feedstock cost on n-butane isomerization product value

Table 8.1 Isobutane dehydrogenation process—Design basis and assumptions

Table 8.2 Isobutane dehydrogenation process—Feed and product compositions

Table 8.3 Isobutane dehydrogenation process—Stream flows

Table 8.4 Isobutane dehydrogenation process—Major equipment

Table 8.5 Isobutane dehydrogenation process—Utilities summary

Table 8.6 Distribution of sources of reactor heat

Table 8.7 Isobutane dehydrogenation process—Total capital investment

Table 8.8 Isobutane dehydrogenation process—Total capital investment by section

Table 8.9 Isobutane dehydrogenation process—Production costs

Table 8.10 Effect of feedstock cost on isobutane dehydrogenation product value

Table 9.1 n-Butene isomerization process—Design basis and assumptions

Table 9.2 Feed and product compositions

Table 9.3 n-Butene skeletal isomerization process—Stream flows

Table 9.4 n-Butene skeletal isomerization process—Major equipment

Table 9.5 n-Butene skeletal isomerization process—Utilities summary

Table 9.6 n-Butene skeletal isomerization process—Total capital investment

Table 9.7 n-Butenes skeletal isomerization to isobutylene—Production costs

Table 9.8 Effect of feedstock cost on n-butene skeletal isomerization product value
Appendix tables and figures

Appendix A: Table A.1 n-Butane isomerization patent summary 173
Appendix A: Table A.2 Isobutane dehydrogenation patent summary 176
Appendix A: Table A.3 Isobutane oxidative dehydrogenation patent summary 195
Appendix A: Table A.4 n-Butene skeletal isomerization patent summary 199
Appendix E: Figure 7.1 n-Butane isomerization process flow diagram 244
Appendix E: Figure 8.1 Isobutane dehydrogenation process flow diagram 245
Appendix E: Figure 9.1 n-Butene skeletal isomerization process flow diagram 246