IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Abstract

The global butadiene market, with current annual production at about 11 million MT and valued at $30-40 billion, is slated to grow at 4.1% per year through 2016. Approximately two-thirds of the butadiene produced is used in synthetic rubber manufacturing. This growth is primarily based on increased demand via derivative expansion and rapid economic growth, particularly in Asia.

High crude oil prices and low natural gas prices in the U.S. have caused petrochemical companies to shift from oil-based naphtha cracking to natural gas-based ethane cracking, and have resulted in reduced butadiene supply. This has spurred interest in on-purpose butadiene production both from conventional feedstocks and renewable feedstocks.

Meanwhile, there has been great interest in green tires, which are manufactured from synthetic rubber derived from bio-based monomers such as bio-isoprene and bio-butadiene. Indeed, the bio-butadiene area is particularly active with companies including Genomatica and Cobalt Technologies announcing their plans to commercialize in the next five years.

IHS Chemical Process Economics Program (PEP) has reviewed the latest patents and selected open literature made available by the companies mentioned above. Comparative process design and economics are provided for the production of 220 million lb/yr (100,000 ton/yr) of bio-based 1,3-butadiene. These bio-processes will be compared to the dominant, conventional process for butadiene production to understand its feasibility. This report is of interest to biochemical companies, Asian chemical companies in expansion mode, global petrochemical companies seeking to reduce their environmental footprint and polymer/plastic/rubber industries that rely on butadiene as a raw material.
Contents

1. Introduction ... 1
 Background ... 1
 Bio-Based Production Routes .. 2
 Feedstock Properties .. 3
 Cobalt Technologies Process .. 3
 Genomatica Indirect Process ... 4
 Genomatica Direct Process ... 4
 Product Properties ... 5
 Report Overview .. 5

2. Summary ... 6
 Introduction ... 6
 Global Butadiene Demand ... 7
 Global Butadiene Growth ... 8
 Technologies Covered .. 8
 Cobalt Process Technology .. 8
 Process Sections ... 9
 Chemistry – Cobalt Process .. 9
 Genomatica Indirect Process Technology ... 10
 Genomatica Direct Process Technology ... 11
 Existing Conventional Butadiene Technology ... 12
 Feedstock Pricing ... 12
 Effect of Glucose Cost ... 12
 Economic Summaries: Production Costs ... 14
 Cobalt Process at Different Glucose Feedstock Costs ... 18
 Genomatica Indirect Process at Different Glucose Feedstock Costs 18
 Genomatica Direct Process at Different Glucose Feedstock Costs .. 19
 Conclusion ... 19

3. Industry status ... 20
 Introduction ... 20
 Uses .. 21
 Butadiene Demand .. 23
 Butadiene Supply .. 26
 Crude C₄ ... 27
 Butadiene .. 28
 Prices .. 30
 Mixed C₄s ... 30
 1,3 Butadiene .. 31
 Specifications .. 34
 C₄ Stream .. 34
 1,3 Butadiene .. 35
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Capacity</td>
<td>37</td>
</tr>
<tr>
<td>New Capacity</td>
<td>43</td>
</tr>
<tr>
<td>Bio-Butadiene developments</td>
<td>44</td>
</tr>
</tbody>
</table>

4. Technology review

- Introduction | 45 |
- Cobalt Technologies' Bio-Butanol | 45 |
 - Manufacturing of bio-butanol by different routes | 45 |
 - Cobalt Immobilized Cell Bioreactor | 46 |
 - Bioreactor concept nomenclature | 47 |
 - Cobalt Technologies Fermentation Flow Scheme | 48 |
- Product Recovery | 49 |
- 1,3-Butadiene Production by an Indirect technology | 50 |
 - Fermentation | 51 |
 - Conversion Pathways to 1,3-BDO | 51 |
 - 1,3-BDO Recovery | 55 |
 - 1,3-BDO Dehydration to 1,3-Butadiene | 56 |
 - 1,3-Butadiene Recovery and Purification | 57 |
- 1,3-Butadiene Production by a Direct Technology | 57 |
 - Fermentation | 58 |
 - 1,3-Butadiene Recovery and Purification | 62 |
 - By-Product Recovery | 63 |

5. Cobalt Process for Bio-Butadiene | 64 |

- Introduction | 64 |
- Cobalt Technology | 64 |
- Process Sections | 64 |
 - Chemistry | 65 |
 - Basis for Design and Evaluation | 65 |
- Process Description | 68 |
 - Section 100 and 200 – Media Preparation and Fermentation | 69 |
 - Section 300 – Separation and Recovery | 70 |
 - Section 400 – Dehydration of Butanol | 70 |
 - Section 500 & 600 Oxidative Dehydrogenation of Butenes & Butadiene Extraction | 71 |
 - Stream Flows | 71 |
 - Major equipment and utilities summary | 74 |
- Process discussion | 77 |
 - Heat-Exchanger Sizing | 78 |
 - Product Recovery | 79 |
 - Offsite Storage | 79 |
 - Environmental | 79 |
 - Cost estimates | 80 |
 - Fixed-Capital Costs | 81 |
Available Utilities.. 156
Production Costs.. 156
Effect of Operating Level on Production Costs... 157

Appendix C: Cited references ... 158

Appendix D: Patent references by company... 163

Appendix E: Process Flow Diagrams ... 165

Tables

Table 1.1: Butadiene Content from Steam Cracking Various Feedstocks .. 2
Table 1.2: Typical Glucose Properties .. 3
Table 1.3: Typical Specifications Of Butadiene.. 5
Table 2.1: Global Regional Average forecast Growth Rate 1,3-Butadiene, 2013-2018............................... 8
Table 2.2: Bio-Butadiene Production Main Reactions ... 9
Table 2.3: Production Costs of bio-based 1,3-butadiene Base Production Processes 15
Table 2.4: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs............................... 18
Table 2.5: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs............................... 18
Table 2.6: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs............................... 19
Table 3.1: Regional forecast demand growth rates of 1,3-butadiene, 2013-2018 24
Table 3.2: U.S. Ethylene Fresh Feed Slate – Second Half 2011 .. 26
Table 3.3: Typical composition ranges for low 1,3-butadiene C 4 streams ... 35
Table 3.4: Raffinate-3 Sales Specification ... 35
Table 3.5: Example of a 1,3-butadiene product specification ... 36
Table 3.6: Typical specifications of butadiene .. 37
Table 3.7: Plants World capacity of butadiene C 4 extraction plants ... 38
Table 3.8: World capacity of on-purpose butadiene plants .. 43
Table 3.9: New Announced New butadiene construction .. 43
Table 4.1: Genomatica’s Fermentation Patents .. 51
Table 4.2: Direct Fermentation Patents ... 59
Table 5.1: 1,3 Bio-Butadiene Production Main Reactions .. 65
Table 5.2: Cobalt Technology Design Basis and Assumptions ... 66
Table 5.3: Cobalt Technologies .. 72
Table 5.4: Bio-Butadiene By Cobalt Technologies: Major Equipment .. 74
Table 5.5: Bio-Butadiene Utilities Summary .. 76
Table 5.6: Summary Of Major Process Waste Streams .. 80
Table 5.7: Relation Between Base Capacity And Product Value ... 82
Table 5.8: Bio-Butadiene Total Capital Investment ... 83
Table 5.9: Bio-Butadiene Capital Investment By Section ... 84
Table 5.10: Bio-Butadiene Production Costs .. 86
Table 5.11: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs Basis: 100,000 ton/yr 1,3-Butadiene ... 91
Table 6.1: Genomatica’s Fermentation Patents .. 93
Table 6.2: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Design Bases and Assumptions ... 101
Table 6.3: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Stream Flows .. 103
Table 6.4: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Major Equipment ... 105
Table 6.5: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Utilities Summary ... 107
Table 6.6: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Total Capital Investment .. 110
Table 6.7: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Capital Investment by Section .. 111
Table 6.8: Summary of Major Liquid Waste Streams .. 112
Table 6.9: Bio-Based 1,3-Butadiene Production by an Indirect Route via 1,3-Butanediol: Production Costs ... 113
Table 6.10: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs 117
Table 7.1: Direct Fermentation Patents .. 119
Table 7.2: Bio-Based 1,3-Butadiene Production by a Direct Route: Design Bases and Assumptions 125
Table 7.3: Bio-Based 1,3-Butadiene Production by a Direct Route: Stream Flows 126
Table 7.4: Bio-Based 1,3-Butadiene Production by a Direct Route: Major Equipment 129
Table 7.5: Bio-Based 1,3-Butadiene Production by a Direct Route: Utilities Summary 131
Table 7.6: Bio-Based 1,3-Butadiene Production by a Direct Route: Total Capital Investment 134
Table 7.7: Bio-Based 1,3-Butadiene Production by a Direct Route: Capital Investment by Section 135
Table 7.8: Summary of Major Liquid Waste Streams .. 136
Table 7.9: Bio-Based 1,3-Butadiene Production by a Direct Route: Production Costs 137
Table 7.10: Production Costs of 1,3-Butadiene At Different Glucose Feedstock Costs 142
Table A-1: Bio-Based Butadiene Production by Cobalt: Fermentation Patents Patent Summary 144
Table A-2: Bio-Based 1,3-Butadiene Production by an Indirect Route: Dehydration Patents Patent Summary ... 149

Figures

Figure 1.1: Typical Steam Cracker C_4 Flow to Produce Crude Butadiene .. 1
Figure 1.2: Typical Extractive Distillation Butadiene Recovery From Crude C_4s and Purification 2
Figure 1.3: Block Flow Diagram Bio-Based Butadiene Production by Cobalt Route .. 4
Figure 1.4: Block Flow Diagram Bio-Based Butadiene Production by Genomatica Indirect Route 4
Figure 1.5: Block Flow Diagram Bio-Based Butadiene Production by Genomatica Direct Route 4
Figure 2.1: Butadiene Price Forecast .. 7
Figure 2.2: 2014 Global Butadiene Demand ... 7
Figure 2.3: Block Flow Diagram for Cobalt Process ... 9