Abstract
Process Economics Program Report 285
CO₂-BASED POLYMERS
(July 2012)

Using carbon dioxide as a feedstock instead of conventional petroleum-derived raw materials is an attractive scenario to produce polymers. Developing processes and products that are “sustainable” and have reduced “carbon footprint” have been important goals. CO₂ is abundant, renewable, and inexpensive. During the last several years, the polymer industry has been exploring renewable feedstocks such as CO₂ for producing polymers.

Development in carbon dioxide-based polymers has been in the production of polycarbonates. Aliphatic polycarbonates can be directly produced by reacting epoxides with carbon dioxide. In addition, aromatic polycarbonates based on bisphenol A (BPA) can be produced by reacting an epoxide with carbon dioxide to produce an intermediate. CO₂-based polymers containing up to 50% carbon dioxide are produced. This report examines the production of CO₂-based polymers, specifically poly(propylene carbonate), poly(propylene carbonate) polyl, and BPA polycarbonate. This report will be of value to those companies engaged in the production of CO₂-based polymers and the conventional petroleum-derived feedstock-based polymers.
CO$_2$-BASED POLYMERS

by Susan L. Bell

July 2012

Santa Clara, California 95054
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS Chemical DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, Asia, South and Central America, the Middle East, Canada and Mexico.
CONTENTS

GLOSSARY ... XIV

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1

 INDUSTRIAL ASPECTS .. 2-1
 Carbon Dioxide Sources ... 2-1
 CO₂-Based Polymer Companies ... 2-2
 Potential CO₂ Sequestration by CO₂-Based Polymers 2-2

 TECHNICAL ASPECTS .. 2-3
 Catalyst Development ... 2-3
 Product Development .. 2-4

 PROCESS ECONOMICS .. 2-5
 Catalyst .. 2-5
 Polymer .. 2-7
 Poly(propylene Carbonate) ... 2-7
 Poly(propylene Carbonate) Polyol ... 2-9
 CO₂-Based BPA Polycarbonate ... 2-11

 CARBON FOOTPRINT .. 2-12

3 INDUSTRY STATUS ... 3-1

 CARBON DIOXIDE SOURCES .. 3-1
 CO₂-BASED POLYMER COMPANIES ... 3-2
 Asahi Kasei Chemicals Corporation .. 3-2
 Bayer MaterialScience ... 3-2
 China National Offshore Oil Company (CNOOC) 3-3
 Empower Materials Inc. .. 3-3
 Inner Mongolia Mengxi High-Tech Group Co. Ltd. 3-3
 Jinlong Green Chemical Co., Ltd. ... 3-4
 Nanyang Zhongju Tianguan Low Carbon Technology Co. 3-4
 Novomer, Inc. ... 3-4
 SK Innovation ... 3-5

 CO₂-BASED POLYMERS ... 3-5
CONTENTS (Continued)

BPA Polycarbonate ... 3-5
Aliphatic Polycarbonate .. 3-5
 Poly(propylene Carbonate) .. 3-6
 Poly(ethylene Carbonate) ... 3-7
Applications ... 3-7

4 CHEMISTRY AND PROPERTIES ... 4-1

CO₂-BASED BPA POLYCARBONATE PRODUCTION 4-1
ALIPHATIC POLYCARBONATE AND ALIPHATIC POLYCARBONATE
POLYOLS PRODUCTION .. 4-2
Heterogeneous Catalysts .. 4-4
Homogeneous Catalysts .. 4-8
Summary of Technologies Used by Aliphatic Polycarbonate and Aliphatic
Polycarbonate Polyol Producing Companies 4-17
 Bayer MaterialScience ... 4-17
 China National Offshore Oil Company (CNOOC) 4-18
 Empower Materials Inc. .. 4-18
 Inner Mongolia Mengxi High-Tech Group Co., Ltd 4-18
 Jinlong Green Chemical Co., Ltd. .. 4-18
 Nanyang Zhongju Tianguan Low Carbon Technology Co., Ltd 4-18
 Novomer, Inc. ... 4-18
 SK Innovation Co., Ltd. .. 4-19
Properties of Aliphatic Polycarbonates 4-19
 High Molecular Weight Aliphatic Polycarbonates 4-19
 Aliphatic Polycarbonate Polyols ... 4-23
Applications for High Molecular Weight Aliphatic Polycarbonate 4-24
 Sacrificial Binder .. 4-24
 Electronic Processing ... 4-24
 Packaging and Films ... 4-24
Applications for Low Molecular Weight Aliphatic Polycarbonate 4-25
 Coatings ... 4-25
 Polyurethane Foams, Adhesives and Coatings 4-25
 Surfactants ... 4-26

5 ECONOMIC EVALUATION OF COBALT-SALEN HOMOGENEOUS
CATALYST PRODUCTION ... 5-1
CONTENTS (Continued)

PROCESS CHEMISTRY FOR SINGLE-COMPONENT COBALT-SALEN HOMOGENEOUS CATALYST PRODUCTION .. 5-2

PROCESS DESCRIPTION FOR SINGLE-COMPONENT COBALT-SALEN HOMOGENEOUS CATALYST PRODUCTION .. 5-6
 Step 1: Equation 5.1 ... 5-15
 Step 2: Equation 5.2 ... 5-15
 Step 3: Equation 5.3 ... 5-15
 Step 4: Equation 5.4 ... 5-16
 Step 5: Equation 5.5 ... 5-16
 Step 6: Equation 5.6 ... 5-16
 Step 7: Equation 5.7 ... 5-16
 Step 8: Equation 5.8 ... 5-16
 Step 9: Equation 5.9 ... 5-16
 Step 10: Equation 5.10 .. 5-17

COST ESTIMATES .. 5-17

PROCESS CHEMISTRY FOR COBALT-SALEN HOMOGENEOUS CATALYST WITH AN INITIATING LIGAND PRODUCTION 5-23

PROCESS DESCRIPTION FOR COBALT-SALEN HOMOGENEOUS CATALYST WITH AN INITIATING LIGAND PRODUCTION 5-24
 Step 1: Equation 5.12 .. 5-29
 Step 2: Equation 5.13 .. 5-29
 Step 3: Equation 5.14 .. 5-29
 Step 4: Equation 5.15 .. 5-30

COST ESTIMATES .. 5-30

PROCESS DESCRIPTION FOR SINGLE-COMPONENT COBALT-SALEN HOMOGENEOUS CATALYST PRODUCTION FROM A RECOVERED CATALYST PRECURSOR ... 5-35
 Step 1 ... 5-38
 Step 2: Equation 5.11 .. 5-38
 Step 3: Equation 5.10 .. 5-38

COST ESTIMATES .. 5-38

6 ECONOMIC EVALUATION OF POLY(PROPYLENE CARBONATE) PRODUCTION .. 6-1
CONTENTS (Continued)

PROCESS DESCRIPTION ... 6-1
Section 100: Polymerization .. 6-5
Section 200: Catalyst Separation .. 6-5
Section 300: Polymer Separation .. 6-5
Section 400: Monomer Recovery .. 6-5
PROCESS DISCUSSION ... 6-6
Catalyst .. 6-6
Waste Treatment ... 6-7
Materials of Construction ... 6-7
COST ESTIMATES .. 6-7
CARBON FOOTPRINT ... 6-19

7 ECONOMIC EVALUATION OF THE PRODUCTION OF POLY(PROPYLENE CARBONATE) POLYOLS ... 7-1
PROCESS DESCRIPTION ... 7-1
PROCESS DISCUSSION ... 7-4
Catalyst .. 7-4
Propylene Oxide .. 7-5
Waste Treatment ... 7-5
Materials of Construction ... 7-5
COST ESTIMATES .. 7-5
COST ESTIMATES COMPARISON WITH CONVENTIONAL POLYOLS 7-12
CARBON FOOTPRINT ... 7-14

8 ECONOMIC EVALUATION OF THE PRODUCTION OF CO₂-BASED BISPHENOL A POLYCARBONATE ... 8-1
PROCESS DESCRIPTION ... 8-1
Section 100: Ethylene Carbonate Production ... 8-8
Section 200: Dimethyl Carbonate Production ... 8-8
Section 300: Diphenyl Carbonate Production ... 8-8
Section 400: Transesterification and Polycondensation .. 8-9
Section 500: Compounding and Bulk Handling .. 8-9
COST ESTIMATES .. 8-10
CONTENTS (Concluded)

COMPARISON OF BPA POLYCARBONATE PRODUCED WITH CO₂ AND BPA POLYCARBONATE PRODUCED BY A CONVENTIONAL INTERFACIAL PROCESS .. 8-20
CARBON FOOTPRINT ... 8-20

APPENDIX A PATENT SUMMARY TABLES .. A-1
APPENDIX B DESIGN AND COST BASES .. B-1
APPENDIX C CITED REFERENCES .. C-1
APPENDIX D PATENT REFERENCES BY COMPANY .. D-1
APPENDIX E PROCESS FLOW DIAGRAMS ... E-1
FIGURES

2.1 Effect of Plant Capacity on the Product Value of Cobalt-Salen Homogeneous Catalysts ... 2-6
2.2 Sensitivity of PPC Product Value to Plant Production Capacity and Catalyst Productivity ... 2-8
2.3 Comparison of the Production Costs for PPC and Other Polymers 2-9
2.4 Sensitivity of PPC Polyol Product Value to Plant Production Capacity and Catalyst Productivity ... 2-11
2.5 Comparison of Cradle-to-Gate Carbon Footprints of Various Polymers ... 2-12
4.1 General Structure of (Salen)MX Complexes .. 4-9
4.2 General Structure of Zinc β-Diiminate Complexes 4-9
4.3 General Structure of Metal Phenoxide Complexes 4-9
4.4 General Structure of Metal Porphyrin Complexes 4-10
4.5 Chromium-Salen Complexes .. 4-11
4.6 Chromium-Salan Complexes .. 4-11
4.7 Cobalt-Salen Complexes ... 4-12
4.8 Single-Component Cobalt-Salen Catalyst .. 4-13
4.9 Single-Component Cobalt-Salen Catalyst with Two Tertiary Amine Cation “Arms” .. 4-13
4.10 Single-Component Cobalt-Salen Catalyst with Bidentate Coordination Mode (SK Energy US20110054145) 4-14
4.11 Single-Component Cobalt-Salen Catalyst with Acid-Base Homoconjugation (SK Energy WO2010147421) 4-15
4.12 Example of SK Energy’s Recyclable Cobalt-Salen Catalyst (SK Innovation US20110207909) .. 4-15
4.13 Single-Component Cobalt-Salen Catalyst from Novomer WO2010022388 4-16
4.14 Cobalt-Salen Catalyst with an Initiating Ligand for Polyols Production (Novomer WO2010028362) .. 4-17
4.15 Types of Polymer Chains Produced .. 4-17
4.16 Regiochemistry of PPC .. 4-20
4.17 Stereochemistry of PPC .. 4-20
5.1 Single-Component Cobalt-Salen Catalyst from US20110207909 5-1
5.2 Cobalt-Salen Catalyst with an Initiating Ligand from WO2010022388 5-2
5.3 Recovered Catalyst Precursor from PPC Production 5-5
5.4 Production of Single-Component Co-Salen Catalyst Process Flow Diagram .. E-3
FIGURES (Concluded)

5.5 Production Schedule for a Weekly Batch of Single-Component Co-Salen Homogeneous Catalyst ..5-15
5.6 Product Value of Single-Component Co-Salen Homogeneous Catalyst as a Function of Plant Capacity ...5-23
5.7 Production of Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand Process Flow Diagram ...E-11
5.8 Production Schedule for a Weekly Batch of Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand (B-4) ..5-29
5.9 Product Value of Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand as a Function of Plant Capacity ..5-35
5.10 Production of a Single-Component Co-Salen Homogeneous Catalyst (A-10) from a Recovered Catalyst Precursor Process Flow Diagram ...E-15
6.1 Poly(propylene Carbonate) Production with a Homogeneous Cobalt-Salen Catalyst Process Flow Diagram ..E-17
6.2 Single-Component Cobalt-Salen Catalyst from US20110207909 ..6-6
6.3 Recovered Catalyst Precursor from PPC Production ..6-7
6.4 Sensitivity of PPC Product Value to Plant Production Capacity ..6-17
6.5 Sensitivity of PPC Product Value to Proportion of Recycle Catalyst ..6-17
6.6 Sensitivity of PPC Product Value to Catalyst Productivity ..6-18
6.7 Sensitivity of PPC Product Value to Propylene Oxide Price ..6-18
6.8 PPC: Cradle to Gate ..6-19
6.9 Comparison of Cradle-to-Gate Carbon footprints of Various Polymers ..6-20
7.1 Production of Poly(propylene carbonate) Polyol with a Homogeneous Cobalt-Salen Catalyst Process Flow Diagram ..E-23
7.2 Cobalt-Salen Catalyst with an Initiating Ligand from WO2010022388 ..7-4
7.3 Sensitivity of PPC Product Value to Plant Production Capacity and Catalyst Productivity ...7-12
7.4 PPC Polyl: Cradle to Gate ..7-15
7.5 Comparison of Cradle-to-Gate Carbon footprints of Various Polymers ..7-16
8.1 CO₂-Based BPA Polycarbonate Production by a Process Similar to Asahi Kasei’s Process Process Flow Diagram ..E-25
8.2 CO₂-Based BPA Polycarbonate: Cradle to Gate ..8-21
TABLES

2.1 Several Companies Developing/Producing CO$_2$-Based Polymers2-2
2.2 CO$_2$ Content of Different Polymers ..2-3
2.3 Potential Amount of CO$_2$ Sequestered by Different CO$_2$-Based Polymers2-3
2.4 Process Economics of Cobalt-Salen Homogeneous Catalysts Production2-6
2.5 Process Economics of Poly(propylene Carbonate) Production2-8
2.6 Process Economics of Poly(propylene Carbonate) Polyol Production2-10
2.7 Comparison of Production Costs for BPA-Polycarbonate Processes2-12
3.1 Selected Thermal and Mechanical Properties of Several Polycarbonates3-6
4.1 Aromatic Polycarbonate Production
Patent Summary ..A-3
4.2 Heterogeneous Catalysts for Aliphatic Polycarbonate Production
Patent Summary ..A-5
4.3 Homogeneous Catalysts for Aliphatic Polycarbonate Production
Patent Summary ..A-12
4.4 Applications for CO$_2$-Based Polymers
Patent Summary ..A-16
4.5 Summary of Heterogeneous Catalysts ..4-5
4.6 Effect of Different Supports on Activity of Y(Chloroacetate)$_3$/ZnEt$_2$/Glycerin Rare
Earth Ternary Coordination Catalyst ...4-8
4.7 Glass Transition Temperatures of CO$_2$/PO/CHO Terpolymers4-21
4.8 Properties of Novomer’s Bimodal PPC ...4-23
4.9 Properties of SK Energy’s GreenPol™ PPC ..4-23
5.1 Production of a Single-Component Co-Salen Homogeneous Catalyst
Design Bases and Assumptions ...5-7
5.2 Production of a Single-Component Co-Salen Homogeneous Catalyst
Stream Flows ...5-9
5.3 Production of a Single-Component Co-Salen Homogeneous Catalyst
Major Equipment ...5-18
5.4 Production of a Single-Component Co-Salen Homogeneous Catalyst
Total Capital Investment ..5-20
5.5 Production of a Single-Component Co-Salen Homogeneous Catalyst
Production Costs ..5-21
5.6 Production of a Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand
Design Bases and Assumptions ..5-25
5.7 Production of a Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand
Stream Flows ...5-26
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Production of a Cobalt-Salen Homogeneous Catalyst with an Initiating Ligand</td>
</tr>
<tr>
<td>5.9</td>
<td>Total Capital Investment</td>
</tr>
<tr>
<td>5.10</td>
<td>Production Costs</td>
</tr>
<tr>
<td>5.11</td>
<td>Production of a Single-Component Co-Salen Homogeneous Catalyst from a Recovered Catalyst Precursor</td>
</tr>
<tr>
<td>5.12</td>
<td>Stream Flows</td>
</tr>
<tr>
<td>5.13</td>
<td>Major Equipment</td>
</tr>
<tr>
<td>5.14</td>
<td>Total Capital Investment</td>
</tr>
<tr>
<td>5.15</td>
<td>Production Costs</td>
</tr>
<tr>
<td>6.1</td>
<td>Poly(propylene Carbonate) Production with a Co-Salen Homogeneous Catalyst</td>
</tr>
<tr>
<td>6.2</td>
<td>Stream Flows</td>
</tr>
<tr>
<td>6.3</td>
<td>Major Equipment</td>
</tr>
<tr>
<td>6.4</td>
<td>Utilities Summary</td>
</tr>
<tr>
<td>6.5</td>
<td>Total Capital Investment</td>
</tr>
<tr>
<td>6.6</td>
<td>Capital Investment by Section</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.7 Poly(propylene Carbonate) Production with a Co-Salen Homogeneous Catalyst
Production Costs .. 6-15
6.8 Calculation of PPC Carbon Footprint from Naphtha, Europe 6-20
7.1 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Design Bases and Assumptions ... 7-2
7.2 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Stream Flows .. 7-3
7.3 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Major Equipment .. 7-7
7.4 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Utilities Summary .. 7-8
7.5 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Total Capital Investment ... 7-9
7.6 Poly(propylene Carbonate) Polyol Production with a Co-Salen Homogeneous Catalyst
Production Costs .. 7-10
7.7 Comparative Cost Estimates for Conventional PO-Based Polyols and PPC Polyols ... 7-13
7.8 Net Monomer Consumption .. 7-14
7.9 Calculation of PPC Polyol Carbon Footprint from Naphtha, Europe 7-16
8.1 CO₂-Based BPA Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
Design Bases and Assumptions ... 8-2
8.2 CO₂-Based BPA-Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
Stream Flows ... 8-4
8.3 CO₂-Based BPA-Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
Major Equipment ... 8-11
8.4 CO₂-Based BPA-Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
Total Capital Investment ... 8-15
TABLES (Concluded)

8.5 CO₂-Based BPA-Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
 Capital Investment by Section .. 8-16

8.6 CO₂-Based BPA-Polycarbonate Production by a Process Similar to Asahi Kasei’s Process
 Production Costs .. 8-18

8.7 Comparison of Production Costs for Polycarbonate Processes 8-20

8.8 Calculation of CO₂-Based BPA-Polycarbonate Carbon Footprint from Naphtha, Europe ... 8-22