Abstract
Process Economics Program Report 283
BIO-BASED 1,4-BUTANEDIOL
(August 2012)

1,4-Butanediol (BDO) is an important compound that is used as a starting material for the production of important polymers such as polyesters, polyurethanes, and polyethers. The major uses are in the production of tetrahydrofuran (THF) (an intermediate for spandex and other performance polymers) and polybutylene terephthalate (PBT) resins for engineering plastics.

With the price volatility of conventional fossil fuel-based raw materials and an increased focus on technologies that reduce carbon footprint, there is an opportunity to deploy renewable bio-based technologies for the production of products like BDO. Currently, the majority of BDO installed capacity is based on the conventional acetylene-based process. Many companies are considering bio-based technologies for the production of chemicals with hopes of being able to use cheap sugars as a feedstock, thereby eliminating the need for fossil fuel-based feedstocks. Companies such as Genomatica, BioAmber, and Myriant have announced plans to develop processes to produce BDO from sugars or cellulosic feedstocks. The technologies either produce BDO by direct fermentation of sugars or by indirect routes involving bio-based intermediate (e.g., bio-succinic acid).

In this PEP report, we present process designs and associated cost estimates for producing BDO using both bio-based and conventional process technologies. The designs presented in this report are for a base case capacity of 30 kTA or 66 million lb/yr of BDO. The conventional technology presented is based on acetylene which is still the dominant method of producing BDO in the industry. Additionally, two competing bio-based technologies are presented in terms of process designs and the associated economics—BDO by direct fermentation of glucose and BDO by hydrogenation of bio-succinic acid which is obtained by fermentation of glucose. Process economics presented for these technologies include both capital costs as well as production costs, thereby enabling a direct comparison of the economics of these technologies.
BIO-BASED 1,4-BUTANEDIOL

by Sudeep Vaswani

August 2012

Santa Clara, California 95054
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program's reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client's use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client's use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS Chemical DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, Asia, South and Central America, the Middle East, Canada and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 INDUSTRY STATUS .. 2-1
 TECHNICAL ASPECTS ... 2-2
 Conventional Acetylene Process for BDO .. 2-3
 Bio-Based Processes for 1,4-Butanediol ... 2-3
 1. Direct Fermentation of Glucose to BDO .. 2-3
 2. Hydrogenation of Bio-Succinic Acid to BDO ... 2-3
 ECONOMIC ASPECTS .. 2-3
 Capital Costs ... 2-4
 Production Costs .. 2-4
 Pricing of BDO ... 2-5
 CONCLUSION ... 2-8

3 INDUSTRY STATUS .. 3-1

4 TECHNICAL REVIEW .. 4-1
 FOSSIL FUEL-BASED/CONVENTIONAL CHEMICAL TECHNOLOGIES 4-1
 1,4-Butanediol from Acetylene .. 4-1
 1,4-Butanediol from Propylene Oxide ... 4-2
 1,4-Butanediol from Butadiene .. 4-3
 1,4-Butanediol from Maleic Anhydride via Dimethyl Maleate 4-4
 1,4-Butanediol from Butane .. 4-5
 BIO-BASED 1,4-BUTANEDIOL PRODUCTION TECHNOLOGIES 4-6
 Fermentation-Based Process (Direct Route) ... 4-6
 Hydrogenation of Bio-Based Succinic Acid (Indirect Route) 4-6
 Thermolysis of Poly(4-Hydroxybutyrate) .. 4-6
 1,4-Butanediol by Fermentation of Sugars (Direct Route) 4-7
 Biosynthesis of 4HB from Glucose (Upstream Pathway) 4-7
 Conversion of 4HB to BDO in E. Coli (Downstream Pathway) 4-8
 1,4-Butanediol by Hydrogenation of Bio-Based Succinic Acid (Indirect Route) ... 4-10
 BioAmber Process Technology .. 4-12
CONTENTS (Continued)

Genetic Engineering ... 4-13
Myriant Process Technology .. 4-15
 Type of Substrate/Microorganism Use .. 4-16
 Genetic Engineering ... 4-16
 Metabolic Evolution ... 4-18
Promising Mannheimia Succiniciproducens Technology ... 4-19
 Fermentation ... 4-20
 Recovery and Purification ... 4-21
Hydrogenation of Aqueous Succinic Acid Stream .. 4-22

5 BIO-BASED 1,4-BUTANEDIOL PRODUCTION TECHNOLOGY 5-1
 PROCESS SUMMARY AND DESIGN .. 5-1
 Fermentation .. 5-1
 Recovery and Purification ... 5-2
 SECTION 100—FERMENTATION ... 5-10
 Media Preparation .. 5-10
 Fermentor Sterilization .. 5-10
 Fermentor Inoculation ... 5-10
 Bio-Based BDO Production .. 5-11
 SECTION 200—BDO RECOVERY AND PURIFICATION ... 5-11
 PROCESS DISCUSSION .. 5-11
 Capacity .. 5-11
 Fermentation .. 5-11
 Biomass Separation ... 5-12
 Materials of Construction .. 5-12
 Biomass .. 5-12
 CAPITAL AND PRODUCTION COSTS ... 5-12
 DISCUSSION OF CAPITAL AND PRODUCTION COSTS 5-13
 Product Value .. 5-13
 DISCUSSION OF PROCESS COSTS ... 5-13
 Raw Material Costs ... 5-13
 Capital Costs .. 5-13
CONTENTS (Continued)

6 1,4-BUTANEDIOL PRODUCTION BY HYDROGENATION OF BIO-BASED SUCCINIC ACID (INDIRECT ROUTE) ... 6-1
 PROCESS SUMMARY ... 6-1
 PROCESS DESCRIPTION .. 6-1
 SECTION 100—FERMENTATION ... 6-3
 Media Preparation .. 6-3
 Fermentor Sterilization .. 6-3
 Fermentor Inoculation .. 6-4
 Succinic Acid (Succinate) Production .. 6-4
 SECTION 200—SUCCINIC ACID RECOVERY, HYDROGENATION, AND BDO PURIFICATION .. 6-4
 Reactive Extraction ... 6-5
 Vacuum Distillation ... 6-5
 Catalytic Hydrogenation of Aqueous Succinic Acid ... 6-5
 PROCESS DISCUSSION .. 6-16
 Capacity .. 6-16
 Fermentation ... 6-16
 Biomass Separation .. 6-16
 Succinic Acid Recovery ... 6-16
 Hydrogenation and BDO Purification .. 6-17
 Materials of Construction ... 6-17
 Biomass .. 6-17
 CAPITAL AND PRODUCTION COSTS ... 6-18
 DISCUSSION OF CAPITAL AND PRODUCTION COSTS 6-18
 Product Value ... 6-18
 DISCUSSION OF PROCESS COSTS .. 6-18
 Raw Material Costs .. 6-18
 Capital Costs .. 6-18

7 1,4-BUTANEDIOL PRODUCTION BY CONVENTIONAL ACETYLENE PROCESS .. 7-1
 PROCESS SUMMARY AND DESIGN .. 7-1
 Addition of Formaldehyde to Acetylene ... 7-1
CONTENTS (Concluded)

APPENDIX C CITED REFERENCES ... C-1
APPENDIX D PATENT REFERENCES BY COMPANY ... D-1
APPENDIX E PROCESS FLOW DIAGRAMS ... E-1
FIGURES

2.1 Sensitivity of BDO Product Value to Feedstock Glucose Price.................................2-8
3.1 2010 Global Consumption of 1,4-Butanediol by Region (R283002, 4)...............3-1
3.2 2010 Global Consumption of 1,4-Butanediol by End Use (R283002, 4)...........3-2
3.3 Chart of 1,4-Butanediol Derivatives (R283004)..3-3
4.1 BDO Biosynthetic Pathways Introduced into E. Coli (R283011).........................4-7
4.2 In Silico Design of the BDO Strain (R283013)..4-9
4.3 A BDO Pathway Constructed and Engineered into E. Coli (R283014).............4-10
4.4 Simplified Block Flow Diagram of BDO Production from Sugar (R283014)......4-10
4.5 Succinic Acid Derivatives ...4-11
4.6 Enzymatic Pathway for Succinic Acid Production via E. Coli4-13
4.7 Schematic Representation of BioAmber’s Technology4-14
4.8 Mixed Acid Pathway for Myriant’s Succinate Production via E. Coli4-17
4.9 Carboxylation Pathways (R283025)...4-18
4.10 Central Fermentative Metabolic Pathways Leading to the Formation of Mixed
 Acids in M. Succiniciproducens (R283029)..4-20
4.11 Succinic Acid Hydrogenation Reactions over Catalysts (R283039, 45).............4-23
5.1 Conversion Pathway to BDO...5-2
5.2 Bio-Based 1,4-Butanediol from Glucose (Direct Route)
 Process Flow Diagram ...E-3
5.3 Sensitivity of BDO Product Value to Feedstock Glucose Price ($/MT) (BDO by
 Fermentation of Glucose)..5-14
6.1 Block Flow Diagram of 1,4-Butanediol Production via Bio-Based Succinic Acid
 from Glucose/CO₂ using M. Succiniciproducens..6-2
6.2 Bio-Based 1,4-Butanediol via Succinic Acid Route
 Process Flow Diagram ...E-7
6.3 Sensitivity of BDO Product Value to Feedstock Glucose Price ($/MT) (BDO by
 Hydrogenation of Bio-Succinic Acid)..6-19
7.1 1,4-Butanediol from Conventional Acetylene Process
 Process Flow Diagram ...E-11
TABLES

2.1 Capital Investment Comparison .. 2-4
2.2 Process Economics Comparison for 1,4-Butanediol (¢/lb) 2-6
2.3 Process Economics Comparison for 1,4-Butanediol ($/MT) 2-7
3.1 World Producers of 1,4-Butanediol by Capacity .. 3-5
3.2 2011 Bio-Based 1,4-Butanediol Technology Developers 3-8
3.3 World 1,4-Butanediol Capacity by Process .. 3-9
4.1 World 1,4-Butanediol Capacity by the Process Used .. 4-6
4.2 Metal Containing Heterogeneous Catalysts for the Aqueous Hydrogenation of Maleic or Succinic Acid into BDO, THF, or GBL (R283046) 4-24
5.1 Bio-Based 1,4-Butanediol from Glucose Design Bases 5-4
5.2 1,4-Butanediol from Glucose (Direct Route) Stream Flows 5-5
5.3 1,4-Butanediol from Glucose (Direct Route) Major Equipment 5-7
5.4 1,4-Butanediol from Glucose (Direct Route) Utilities Summary 5-9
5.5 1,4-Butanediol from Glucose (Direct Route) Total Capital Investment 5-15
5.6 1,4-Butanediol from Glucose (Direct Route) Capital Investment by Section 5-16
5.7 1,4-Butanediol from Glucose (Direct Route) Production Costs 5-17
6.1 1,4-Butanediol Production via Bio-Based Succinic Acid Produced by Fermentation of Glucose Design Bases and Assumptions for Fermentation to Succinic Acid .. 6-6
6.2 1,4-Butanediol Production via Bio-Based Succinic Acid Produced by Fermentation of Glucose Design Bases and Assumptions for Hydrogenation of Aqueous Succinic Acid 6-7
6.3 1,4-Butanediol Production via Bio-Based Succinic Acid Produced by Fermentation of Glucose Major Stream Flows ... 6-8
6.4 Bio-Based 1,4-Butanediol via Succinic Acid Route (Indirect Route) Major Equipment ... 6-13
6.5 Bio-Based 1,4-Butanediol via Succinic Acid Route (Indirect Route) Utilities Summary .. 6-15
6.6 Bio-Based 1,4-Butanediol via Succinic Acid Route (Indirect Route) Total Capital Investment .. 6-20
TABLES (Concluded)

6.7 Bio-Based 1,4-Butanediol via Succinic Acid Route (Indirect Route)
 Capital Investment by Section ... 6-21
6.8 Bio-Based 1,4-Butanediol via Succinic Acid Route (Indirect Route)
 Production Costs ... 6-22
7.1 BDO from Acetylene
 Design Basis for Formaldehyde Addition to Acetylene to Form BYO 7-6
7.2 BDO from Acetylene
 Design Basis for Hydrogenation of BYO to BDO 7-7
7.3 BDO from Acetylene
 Design Basis for Purification of BDO .. 7-8
7.4 1,4-Butanediol from Acetylene and Formaldehyde
 Major Stream Flows .. 7-9
7.5 1,4-Butanediol from Acetylene and Formaldehyde
 Major Equipment .. 7-13
7.6 1,4-Butanediol from Acetylene and Formaldehyde
 Total Capital Investment ... 7-19
7.7 1,4-Butanediol from Acetylene and Formaldehyde
 Capital Investment by Section .. 7-20
7.8 1,4-Butanediol from Acetylene and Formaldehyde
 Production Costs .. 7-21