Abstract
Process Economics Program Report 282
METHANOL TO GASOLINE
(December 2011)

Rising petroleum prices have once again focused global attention on using coal to manufacture liquid transportation fuels that can displace petroleum-derived gasoline and diesel. Interests in coal to clean transportation fuel technology will continue as an alternative to petroleum refining. ExxonMobil’s commercially proven Methanol-to-Gasoline (MTG) technology, coupled with established commercial coal gasification and methanol technologies, provides an economically competitive and low risk option for the production of clean gasoline from coal.

Current interest in coal-derived liquid fuels has concentrated on approaches known as indirect liquefaction of which methanol to gasoline is a part. The other indirect technology for the production of transportation fuels from coal is known as Fischer-Tropsch.

This report highlights all major aspects of production of diesel, and/or gasoline as a fuel, along with long-term forecasts for the need for fuels on a global and U.S. basis. In addition to presenting our traditional techno-economic analyses to look at the current standalone methanol to gasoline and integrated options to produce gasoline from coal, we compare the integrated methanol-based route to the Fischer-Tropsch process to convert synthesis gas produced from coal gasification into a slate of fuel products including gasoline and diesel.
METHANOL TO GASOLINE

by Ronald Smith

December 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY</td>
<td></td>
<td>XI</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>REPORT FOCUS</td>
<td>1-4</td>
</tr>
<tr>
<td>SUMMARY</td>
<td></td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>OVERVIEW</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Markets</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>Enhanced Oil Recovery</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Geologic Sequestration</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Water Requirements</td>
<td>2-6</td>
</tr>
<tr>
<td></td>
<td>Technology</td>
<td>2-7</td>
</tr>
<tr>
<td></td>
<td>Constraints of The MTG process</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>Advantages of The MTG Process</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>ECONOMICS</td>
<td>2-11</td>
</tr>
<tr>
<td></td>
<td>Cost Estimates</td>
<td>2-11</td>
</tr>
<tr>
<td></td>
<td>Capital Costs</td>
<td>2-12</td>
</tr>
<tr>
<td></td>
<td>Economics Summary</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>Advantages of the MTG Option</td>
<td>2-14</td>
</tr>
<tr>
<td>INDUSTRY STATUS</td>
<td></td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>GLOBAL LIQUID FUELS OUTLOOK</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>World's Liquid Production</td>
<td>3-7</td>
</tr>
<tr>
<td></td>
<td>Liquids Production Modeling Approach</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>Non-OPEC Production</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>Major Areas of Decline in Non-OPEC Production</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>Major Areas of Growth in Non-OPEC Production</td>
<td>3-10</td>
</tr>
<tr>
<td></td>
<td>Non-OPEC Unconventional Production</td>
<td>3-12</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

World Oil Reserves ... 3-13
OPEC PRODUCTION ... 3-16
Oil Price Forecast ... 3-18
World Liquids Supply/Demand Forecast ... 3-19
Unconventional Liquids .. 3-20
U.S. LIQUID FUELS OUTLOOK .. 3-20
U.S. Liquid Fuels Consumption by Sector .. 3-21
U.S. Domestic Fuels Production by Source ... 3-22
U.S. Liquids Fuels Net Imports as a Share of Total Liquids Fuels Consumption 3-23
U.S. Motor Gasoline and Diesel Fuel Consumption ... 3-24
RECENT CTL PROJECT ACTIVITIES USING EXXON/MOBIL’S MTG TECHNOLOGY . 3-25
China ... 3-26
Australia—Queensland .. 3-26
Process Overview ... 3-27
 Surface Water Management .. 3-30
 Ground Water Management .. 3-30
U.S.—Wyoming .. 3-30
U.S. — West Virginia .. 3-31

4 TECHNOLOGY REVIEW ... 4-1

INTRODUCTION .. 4-1
METHANOL TO GASOLINE BY THE EXXON/MOBIL PROCESS 4-3
Basic Chemistry .. 4-3
Kinetics ... 4-4
Basic Production Scheme .. 4-5
Gasoline Product Characteristics .. 4-7
HALDOR TOPSOE TIGAS PROCESS .. 4-7
CONTENTS (Continued)

Syngas Production ... 4-8
Oxygenate Plant .. 4-9
Gasoline Synthesis .. 4-9
Effects of Hydrogen in the Integrated Loop ... 4-9
Olefins ... 4-10
Durene ... 4-10
Octane Number .. 4-11
Gasoline Yield .. 4-11
Conclusion .. 4-11
Conversion of Syngas from Coal Gasification to DME via the TIGAS Process 4-11
Decoupled Methanol Dehydrogenation Route .. 4-12
Direct Synthesis Route ... 4-12
Haldor Topsoe Indirect Integrated Process for Production of Gasoline from Coal 4-12
Summary .. 4-15
NEW TECHNOLOGY FROM CONOCOPHILLIPS ... 4-16
FEEDSTOCK INTEGRATION .. 4-17

5 METHANOL TO GASOLINE BY THE EXXON/MOBIL MTG PROCESS 5-1

INTRODUCTION .. 5-1
INTEGRATED COAL TO METHANOL ... 5-2
Gasification .. 5-2
Water Gas Shift .. 5-2
Acid Gas Removal ... 5-3
Sulfur Recovery .. 5-3
Methanol Synthesis .. 5-3
DESIGN BASIS AND ASSUMPTIONS .. 5-4
PROCESS DESCRIPTION ... 5-7
Gasoline Synthesis (Section 100) ... 5-12
CONTENTS (Continued)

- Gasoline Refining (Section 200) ... 5-13
- Heavy Gasoline Upgrading (Section 300) ... 5-13
- Product Blending (Section 400) .. 5-14
- PROCESS DISCUSSION ... 5-18
- Materials of Construction ... 5-18
- Catalysts .. 5-18
 - Gasoline Synthesis Catalyst .. 5-18
 - Hydrotreating Catalysts .. 5-18
- Gasoline Fuel Product Blends with Methanol .. 5-20
- COST ESTIMATES .. 5-22
 - Capital Costs .. 5-22
 - Production Costs ... 5-26

6 INTEGRATED COAL TO GASOLINE ... 6-1

- INTRODUCTION ... 6-1
- INTEGRATED COAL TO GASOLINE VIA THE EXXONMOBIL MTG PROCESS 6-2
 - Cost Estimates .. 6-2
 - Capital Costs .. 6-2
 - Production Costs .. 6-4
- INTEGRATED COAL TO GASOLINE VIA F-T SYNTHESIS 6-7
 - COST ESTIMATES .. 6-7
 - Capital Costs .. 6-7
 - Production Costs .. 6-9
- INTEGRATED PROCESSES TO PRODUCE GASOLINE FROM COAL – CONCLUSIONS ... 6-12
 - Standalone ExxonMobil MTG Process .. 6-12
 - Integrated Coal to Gasoline via ExxonMobil MTG Technology 6-12
 - Integrated Coal to Gasoline via High Temperature Fischer-Tropsch Technology..... 6-12
CONTENTS (Concluded)

APPENDIX A PATENT SUMMARY TABLES ... A-1
APPENDIX B DESIGN AND COST BASES ... B-1
APPENDIX C CITED REFERENCES ... C-1
APPENDIX D PATENT REFERENCES BY COMPANY ... D-1
APPENDIX E PROCESS FLOW DIAGRAMS ... E-1
FIGURES

1.1 ExxonMobil’s MTG Technology Process Flow Schematic

1.2 Lurgi’s Methanol to Synfuels Technology Process Flow Schematic

3.1 IEA 2011 Global Oil Production Forecast, Million Barrels per Day

3.2 The Prospects for Oil Production

3.3 World Liquid Fuels Production History and Forecast (1990–2035)

3.4 Non-OPEC Liquids Production by Region (2008–2035)

3.5 World Total Liquid Fuels Production History and Forecast (1990–2035)

3.6 Average Annual World Oil Prices History and Forecast

3.7 World Liquids Supply and Demand by Region (2009–2035)

3.8 Unconventional Resources as a Share of Total World Liquids Production (2009–2035)

3.9 Short-Term History and Forecast of Average U.S. Retail Gasoline Prices versus Crude Oil Prices (January 2007—November 2012)

3.10 U.S. Liquid Fuels Consumption by Sector History and Forecast

3.11 U.S. Domestic Liquids Production by Source (2009–2035)

3.12 Net Import Share of U.S. Liquid Fuels Consumption History and Forecast

3.13 U.S. Motor Gasoline and Diesel Fuel Consumption History and Forecast

3.14 AMBREctl Project Coal-to-Gasoline Process Block Flow Diagram

4.1 Various Processes for Conversion of Coal-to-Liquid Fuels

4.2 Fischer-Tropsch Indirect Process to Produce Fuels from Coal

4.3 Gasoline Components Product Distribution Profile as a Function of Fixed Bed Reaction Space Time

4.4 Fixed Bed MTG Process

4.5 Haldor-Topsoe TIGAS Process for Conversion of Natural Gas to Gasoline

4.6 Production of Gasoline from Coal Haldor-Topsoe Single Step Integrated Process Block Flow Diagram

4.7 Comparative Equilibrium Conversion of CO as a Function of Pressure

4.8 Effect of the H₂/CO Ratio on Equilibrium Production Distribution for Combined Methanol/DME Synthesis

5.1 Integrated Coal to Gasoline via ExxonMobil’s MTG Process
FIGURES (Concluded)

5.2 ICI Synetix Process Flow Schematic Methanol Synthesis Loop.............................. 5-4
5.3 Methanol-to-Gasoline ExxonMobil Technology Process Flow Diagram ... E-3
<table>
<thead>
<tr>
<th>TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Coal to Transportation Fuels Yields 1-1</td>
</tr>
<tr>
<td>2.1 Total Capital Costs—U.S. Gulf Coast 2-12</td>
</tr>
<tr>
<td>2.2 Economics Summary ... 2-13</td>
</tr>
<tr>
<td>4.1 MTG Gasoline Yields .. 4-7</td>
</tr>
<tr>
<td>4.2 MTG Process Gasoline Product Characteristics 4-7</td>
</tr>
<tr>
<td>4.3 TIGAS Process Gasoline Product Characteristics 4-16</td>
</tr>
<tr>
<td>5.1 Gasoline from Methanol Design Bases 5-6</td>
</tr>
<tr>
<td>5.2 ExxonMobil Methanol-to-Gasoline Technology Stream Flows 5-8</td>
</tr>
<tr>
<td>5.3 Expected versus Simulated MTG Gasoline Yields—vol% from Second-Generation MTG Process Technology 5-12</td>
</tr>
<tr>
<td>5.4 Methanol-to-Gasoline ExxonMobil Technology Major Equipment 5-15</td>
</tr>
<tr>
<td>5.5 Methanol-to-Gasoline ExxonMobil Technology Utilities Summary 5-17</td>
</tr>
<tr>
<td>5.6 Comparison of Methanol and Gasoline Fuel Properties 5-21</td>
</tr>
<tr>
<td>5.7 Methanol-to-Gasoline ExxonMobil Technology Total Capital Investment 5-23</td>
</tr>
<tr>
<td>5.8 Methanol-to-Gasoline ExxonMobil Technology Capital Investment by Section 5-24</td>
</tr>
<tr>
<td>5.9 Methanol-to-Gasoline ExxonMobil Technology Production Costs 5-27</td>
</tr>
<tr>
<td>6.1 Coal-to-Gasoline via Methanol Route Exxonmobil Technology Total Capital Investment 6-3</td>
</tr>
<tr>
<td>6.2 Coal-to-Gasoline via Methanol Route Exxonmobil Technology Production Costs 6-5</td>
</tr>
<tr>
<td>6.3 Gasoline from Coal by High-Temperature Fluidized-Bed F-T Technology Total Capital Investment 6-8</td>
</tr>
<tr>
<td>6.4 Gasoline from Coal by High-Temperature Fluidized-Bed F-T Technology Production Costs 6-10</td>
</tr>
</tbody>
</table>