Abstract

Process Economics Program Report 281
ON-PURPOSE TECHNOLOGIES FOR POLYETHYLENE COMONOMERS
(July 2011)

This Process Economics Program report presents technical and economic appraisals of ethylene-based commercial technologies for production of polyethylene comonomers, namely, 1-butene, 1-hexene, and 1-octene. Although linear alpha-olefin and Fischer-Tropsch processes are currently the major sources for production of these comonomers, their demand is expanding at a faster rate with respect to higher alpha-olefins. This has created opportunities for alternative methods for their production through on-purpose technologies which offer producers a better way to balance productivity according to market demand.

The following three technologies are evaluated:
- Ethylene tetramerization (for 1-octene production)
- Ethylene dimerization (for 1-butene production)
- Ethylene trimerization (for 1-hexene production)

Ethylene tetramerization technology has been analyzed on the basis of information and concepts extracted from the technical articles and patents of Sasol. The catalyst systems are based upon a chromium source, a bidentate phosphine ligand and an aluminoxane activator, which are capable of providing 1-octene selectivities of up to 70%. Normal temperature and pressure ranges for the ethylene tetramerization process are 122–140°F (50–60°C) and 40–50 bar, respectively. The catalyst system can be varied to produce a mixed product of 1-octene and 1-hexene if desired.

Ethylene dimerization technology has been analyzed on the basis of information and concepts extracted from the technical articles of IFP and SABIC. The catalyst system is basically an organo-metallic complex comprised of titanium alkoxide and a modifier (possibly an ether, e.g., tetrahydrofuran). Triethylaluminum is used as an activator. Normal temperature and pressure ranges for the ethylene dimerization process are 122–140°F (50–60°C) and 20–30 atm, respectively.

Ethylene trimerization technology has been analyzed on the basis of information and concepts extracted from the technical articles of Chevron Phillips. The catalyst system is basically an organo-metallic complex formed from chromium(III) 2-ethylhexanoate (catalyst) and 2,5-dimethylpyrrole (ligand). Triethylaluminum is used as an activator. A chloride source, e.g., diethylaluminum chloride, is also added as a modifier. Normal temperature and pressure ranges for the ethylene trimerization process are 230–266°F (110–130°C) and 700–800 psia, respectively.
ON-PURPOSE TECHNOLOGIES FOR POLYETHYLENE COMONOMERS

by Syed N. Naqvi

July 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY .. 2-1

 COMMERCIAL OVERVIEW .. 2-1

 TECHNICAL OVERVIEW .. 2-2

1-Octene Production by Ethylene Tetramerization ... 2-2

 Catalyst System .. 2-3

 Reaction Conditions ... 2-4

 Reactor .. 2-6

 Production Separation .. 2-6

1-Butene Production by Ethylene Dimerization ... 2-6

 Catalyst System .. 2-7

 Supported Catalysts .. 2-8

 Cocatalysts ... 2-9

 Modifiers ... 2-9

 Selectivity .. 2-10

 Temperature ... 2-11

 Ethylene Concentration (Process Pressure) .. 2-12

 Reactor .. 2-13

1-Hexene Production by Ethylene Trimerization ... 2-13

 Catalyst Systems .. 2-14

 Effect of Halides .. 2-17

 Solvents ... 2-19

 Temperature ... 2-19

 Pressure ... 2-19

 Conversion and Selectivity .. 2-19

 PROCESS ECONOMICS .. 2-20

3 INDUSTRY STATUS .. 3-1

 ON-PURPOSE LAO PRODUCTION COMPANIES ... 3-1
CONTENTS (Continued)

CAPACITY, PRODUCTION AND CONSUMPTION .. 3-2

4 TECHNICAL REVIEW ... 4-1

1-OCTENE PRODUCTION BY ETHYLENE TETRAMERIZATION ... 4-2
Catalyst Systems ... 4-2
Cocatalysts and Selectivities ... 4-7
Temperature .. 4-8
Ethylene Concentration (Process Pressure) .. 4-8
Chromium Concentration ... 4-9

1-BUTENE PRODUCTION BY ETHYLENE DIMERIZATION .. 4-13
Catalyst Systems ... 4-13
Cocatalysts .. 4-20
Modifiers .. 4-21
Selectivity ... 4-21
Temperature .. 4-22
Ethylene Concentration (Process Pressure) .. 4-23

1-HEXENE PRODUCTION BY ETHYLENE TRIMERIZATION .. 4-24
Catalyst Systems ... 4-25
Effect of Halide .. 4-29
Solvents .. 4-31
Temperature .. 4-31
Pressure ... 4-31
Conversion and Selectivity .. 4-31

5 1-OCTENE PRODUCTION BY ETHYLENE TETRAMERIZATION PROCESS 5-1

PROCESS DESCRIPTION ... 5-3
Section 100—Ethylene Tetramerization .. 5-3
Section 200—Product Recovery .. 5-4

PROCESS DISCUSSION ... 5-13
CONTENTS (Continued)

Process Design .. 5-13
Feedstock Condition... 5-13
Reaction Conditions .. 5-13
Solvent/Reaction Medium .. 5-13
Catalyst System ... 5-13
Reactor Sizing .. 5-14
Product Recovery ... 5-14
Impurities ... 5-14
Materials of Construction .. 5-15
Process Waste Effluents ... 5-15
COST ESTIMATES .. 5-15
Fixed Capital Costs ... 5-15
Production Costs ... 5-16

6 1-BUTENE PRODUCTION BY ETHYLENE DIMERIZATION PROCESS 6-1

PROCESS DESCRIPTION ... 6-2
Section 100—Ethylene Dimerization .. 6-3
Section 200—Product Recovery .. 6-4
PROCESS DISCUSSION ... 6-11
Process Design ... 6-11
Feedstock Condition ... 6-11
Reaction Conditions ... 6-11
Reaction Medium/Solvent .. 6-11
Catalyst System .. 6-11
Reactor Size Estimation ... 6-12
Product Recovery ... 6-12
Materials of Construction .. 6-12
Process Waste Effluents ... 6-13
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>P–C–C–P Backbone Structure Ligand</td>
<td>4-4</td>
</tr>
<tr>
<td>4.2</td>
<td>Structural Formula of Catalyst Giving Highest Combined Selectivity of 1-Octene and 1-Hexene</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Catalyst Performance Profile</td>
<td>4-10</td>
</tr>
<tr>
<td>4.4</td>
<td>Selectivity as a Function of Ethylene Conversion and Catalyst Composition</td>
<td>4-11</td>
</tr>
<tr>
<td>4.5</td>
<td>1-Octene and 1-Hexene Ratio as a Function of Ethylene Conversion</td>
<td>4-12</td>
</tr>
<tr>
<td>4.6</td>
<td>Cocatalyst Formula</td>
<td>4-12</td>
</tr>
<tr>
<td>4.7</td>
<td>Ethylene Dimerization as a Function of Reaction Time</td>
<td>4-17</td>
</tr>
<tr>
<td>4.8</td>
<td>Catalytic Activity as a Function of NiSO₄ Content and Calcination Temperature</td>
<td>4-17</td>
</tr>
<tr>
<td>4.9</td>
<td>Catalytic Activity of 10-NiSO₄/Al₂O₃-ZrO₂ Catalyst as a Function of Al₂O₃ Content</td>
<td>4-20</td>
</tr>
<tr>
<td>5.1</td>
<td>1-Octene Production by Ethylene Tetramerization Process Process Flow Diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Net Production Cost and Product Value of 1-Octene and 1-Hexene Product as a Function of Ethylene Price</td>
<td>5-21</td>
</tr>
<tr>
<td>5.3</td>
<td>Production Costs of 1-Octene and 1-Hexene Product as a Function of Plant Operating Level and Plant Capacity</td>
<td>5-21</td>
</tr>
<tr>
<td>6.1</td>
<td>1-Butene Production by Ethylene Dimerization Process Process Flow Diagram</td>
<td>E-7</td>
</tr>
<tr>
<td>6.2</td>
<td>Net Production Cost and Product Value of 1-Butene Product as a Function of Ethylene Price</td>
<td>6-19</td>
</tr>
<tr>
<td>6.3</td>
<td>Production Costs of 1-Butene Product as a Function of Plant Operating Level and Plant Capacity</td>
<td>6-19</td>
</tr>
<tr>
<td>7.1</td>
<td>1-Hexene Production by Ethylene Trimerization Process Process Flow Diagram</td>
<td>E-9</td>
</tr>
<tr>
<td>7.2</td>
<td>Net Production Cost and Product Value of 1-Hexene Product as a Function of Ethylene Price</td>
<td>7-21</td>
</tr>
<tr>
<td>7.3</td>
<td>Production Costs of 1-Hexene Product as a Function of Plant Operating Level and Plant Capacity</td>
<td>7-21</td>
</tr>
</tbody>
</table>
TABLES

2.1 Effects of Temperature Variation on Catalyst Activity, Ethylene Conversion and Product Selectivity ... 2-5

2.2 Effects of Ethylene Feed Rate Variation on Conversion and Product Selectivity .. 2-5

2.3 Hydrocarbon Product Composition of Ethylene Dimerization over Ti(OBu)₄-AlEt₃ .. 2-7

2.4 Performance of Selected Group-1VB Transition-metal Complexes as Catalysts for Ethylene Dimerization ... 2-8

2.5 Specific Surface Area and Acidity of NiSO₄/ZrO₂ Catalysts ... 2-9

2.6 Impact of Pretreatment of Ti(OBu)₄-AlEt₃ Catalyst with Ethylene and Hydrogen .. 2-11

2.7 Temperature Variation Effects on Ethylene Conversion and Product Selectivity for Dimerization Process ... 2-11

2.8 Effects of Process Pressure on Catalyst Activity and Product Selectivity 2-12

2.9 Trimerization Catalysts, Ligands, and Activators ... 2-16

2.10 Effects of Halides on Ethylene Trimerization ... 2-17

2.11 Effects of HCE/Cr Molar Ratio on Ethylene Trimerization ... 2-18

2.12 Effects of Ligand/Cr Molar Ratio on Ethylene Trimerization .. 2-19

2.13 On-Purpose PE Comonomers Production Technologies
 Total Capital Investment .. 2-21

2.14 On-Purpose PE Comonomers Production Technologies
 Production Costs ... 2-22

3.1 Linear Alpha Olefins Consumption Breakdown in Major Areas 3-3

3.2 World on-Purpose Linear Alpha Olefins Production ... 3-4

3.3 World Planned on-Purpose Linear Alpha Olefin Production 3-5

4.1 Temperature Variation Effects on Catalyst Activity, Ethylene Conversion and Product Selectivity ... 4-8

4.2 Effects of Ethylene Feed Rate Variation on Conversion and Product Selectivity .. 4-8

4.3 Hydrocarbon Product Composition of Ethylene Dimerization over Ti(OBu)₄-
 AlEt₃ ... 4-14

4.4 Performance of Selected Group-1VB Transition-Metal Complexes as Catalysts for Ethylene Dimerization ... 4-15
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Specific Surface Area and Acidity of NiSO₄/ZrO₂ Catalysts</td>
<td>4-16</td>
</tr>
<tr>
<td>4.6</td>
<td>Specific Surface Area, Acidity and Catalytic Activity of NiSO₄/SiO₂ Catalysts</td>
<td>4-18</td>
</tr>
<tr>
<td>4.7</td>
<td>Specific Surface Area and Catalytic Activity of Al₂O₃-Promoted NiSO₄/SiO₂ Catalysts</td>
<td>4-19</td>
</tr>
<tr>
<td>4.8</td>
<td>Impact of Pretreatment of Ti(OBu)₄-AlEt₃ Catalyst with Ethylene and Hydrogen</td>
<td>4-22</td>
</tr>
<tr>
<td>4.9</td>
<td>Temperature Variation Effects on Ethylene Conversion and Product Selectivity for Dimerization Process</td>
<td>4-23</td>
</tr>
<tr>
<td>4.10</td>
<td>Effects of Process Pressure on Catalyst Activity and Product Selectivity</td>
<td>4-24</td>
</tr>
<tr>
<td>4.11</td>
<td>Trimerization Catalysts, Ligands, and Activators</td>
<td>4-28</td>
</tr>
<tr>
<td>4.12</td>
<td>Effects of Halides on Ethylene Trimerization</td>
<td>4-29</td>
</tr>
<tr>
<td>4.13</td>
<td>Effects of HCE/Cr Molar Ratio on Ethylene Trimerization</td>
<td>4-30</td>
</tr>
<tr>
<td>4.14</td>
<td>Effects of Ligand/Cr Molar Ratio on Ethylene Trimerization</td>
<td>4-31</td>
</tr>
<tr>
<td>5.1</td>
<td>1-Octene Production by Ethylene Tetramerization Process Design Bases</td>
<td>5-5</td>
</tr>
<tr>
<td>5.2</td>
<td>1-Octene Production by Ethylene Tetramerization Process Stream Flows</td>
<td>5-7</td>
</tr>
<tr>
<td>5.3</td>
<td>1-Octene Production by Ethylene Tetramerization Process Major Equipment</td>
<td>5-10</td>
</tr>
<tr>
<td>5.4</td>
<td>1-Octene Production by Ethylene Tetramerization Process Utilities Summary</td>
<td>5-12</td>
</tr>
<tr>
<td>5.5</td>
<td>1-Octene Production by Ethylene Tetramerization Process Total Capital Investment</td>
<td>5-17</td>
</tr>
<tr>
<td>5.6</td>
<td>1-Octene Production by Ethylene Tetramerization Process Capital Investment by Section</td>
<td>5-18</td>
</tr>
<tr>
<td>5.7</td>
<td>1-Octene Production by Ethylene Tetramerization Process Production Costs</td>
<td>5-19</td>
</tr>
<tr>
<td>6.1</td>
<td>1-Butene Production by Ethylene Dimerization Process Design Bases</td>
<td>6-5</td>
</tr>
<tr>
<td>6.2</td>
<td>1-Butene Production by Ethylene Dimerization Process Stream Flows</td>
<td>6-7</td>
</tr>
<tr>
<td>6.3</td>
<td>1-Butene Production by Ethylene Dimerization Process Major Equipment</td>
<td>6-9</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Utilities Summary 1-Butene Production by Ethylene Dimerization Process</td>
<td>6-10</td>
</tr>
<tr>
<td>6.5</td>
<td>Total Capital Investment 1-Butene Production by Ethylene Dimerization Process</td>
<td>6-15</td>
</tr>
<tr>
<td>6.6</td>
<td>Capital Investment by Section 1-Butene Production by Ethylene Dimerization Process</td>
<td>6-16</td>
</tr>
<tr>
<td>6.7</td>
<td>Production Costs 1-Butene Production by Ethylene Dimerization Process</td>
<td>6-17</td>
</tr>
<tr>
<td>7.1</td>
<td>Design Bases 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-5</td>
</tr>
<tr>
<td>7.2</td>
<td>Stream Flows 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-7</td>
</tr>
<tr>
<td>7.3</td>
<td>Major Equipment 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-10</td>
</tr>
<tr>
<td>7.4</td>
<td>Utilities Summary 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-12</td>
</tr>
<tr>
<td>7.5</td>
<td>Total Capital Investment 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-17</td>
</tr>
<tr>
<td>7.6</td>
<td>Capital Investment by Section 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-18</td>
</tr>
<tr>
<td>7.7</td>
<td>Production Costs 1-Hexene Production by Ethylene Trimerization Process</td>
<td>7-19</td>
</tr>
</tbody>
</table>