Abstract

Process Economics Program Report 280

COMPRENDIUM OF LEADING BIOETHANOL TECHNOLOGIES

(December 2011)

The use of ethanol as an alternative motor fuel has been steadily increasing around the globe over the past few years. Being an oxygenated fuel, it is less polluting compared to gasoline and it can be produced from corn via fermentation. In the United States, most of the ethanol is produced from corn by dry corn milling. Production of ethanol from corn is fraught with several environmental and social issues. Cellulosic biomass may become an alternative feedstock for ethanol production. Since the United States has a large cellulosic biomass production base, ethanol produced from cellulosic feedstock and utilized as a substitute for gasoline could help in promoting rural development, reducing greenhouse gases, and achieving energy independence.

There are numerous challenges, both technical and infrastructure-related, associated with commercializing lignocellulosic biomass as a feedstock for ethanol production. While large quantities of various crop wastes go unused throughout the world, these lignocellulosic materials are difficult to efficiently convert into chemical products due to their complex polymeric structures. Innovative new technologies that couple biotechnology and chemistry with process engineering are necessary in order to achieve efficient commercial processes.

In this report, PEP presents process designs and associated cost estimates for producing ethanol in the United States from cellulosic biomass such as wood chips, corn stover, corn cobs and municipal solid waste. Six economic models are provided of which five are based on biochemical approaches, while one is based on a thermochemical approach. The biochemical routes considered in this report are: dilute acid pretreatment with ammonia conditioning, dilute acid pretreatment with lime conditioning, concentrated acid hydrolysis, ammonia pretreatment, and conventional corn dry milling. The thermochemical approach considered is indirect gasification of biomass followed by chemical synthesis of ethanol from syngas. While the technologies considered are very promising, the production cost of cellulosic ethanol does not yet meet the goal set by U.S. Department of Energy (a minimum ethanol selling price of $1.49/gal by 2012, in 2007 dollar). This is largely due to the high capital investment required for a new plant. Large scale initiatives underway in the United States could change the competitive situation for cellulosic ethanol in the longer term. Some of these initiatives include development of feedstock infrastructure to lower the potential cost of cellulosic feedstock. Other initiatives are underway related to processing technologies for lowering fixed capital requirements.
A private report by the Process Economics Program

Report No. 280

COMPENDIUM OF LEADING BIOETHANOL TECHNOLOGIES

by Sudeep Vaswani

December 2011

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION ...1-1

2 SUMMARY ...2-1
 INTRODUCTION ...2-1
 INDUSTRY STATUS ..2-2
 FEEDSTOCKS ..2-3
 TECHNICAL ASPECTS ..2-3
 Dilute Acid Prehydrolysis with Ammonia Conditioning (Milled Corn Stover)2-4
 Ammonia Pretreatment (Corn Cobs) ..2-5
 Dilute Acid Prehydrolysis with Lime Conditioning (Corn Stover)2-5
 Concentrated Acid Hydrolysis (Municipal Solid Waste) ..2-6
 Corn Dry Milling (Corn) ...2-6
 Chemical Catalysis of Syngas derived from Biomass (Wood Chips)2-6
 ECONOMIC ASPECTS ...2-7
 CONCLUSIONS ...2-10

3 INDUSTRY STATUS ..3-1
 STATUS IN THE UNITED STATES ..3-4
 STATUS IN BRAZIL ..3-5
 ETHANOL PRODUCTION ...3-9
 Cellulosic Ethanol ..3-16
 GLOBAL TARIFFS AND TRADE ..3-22
 ETHANOL PRICES ..3-22
 United States ...3-22
 Brazil ...3-24

4 BIOMASS FEEDSTOCKS ..4-1
 BIOMASS AVAILABILITY ...4-3
CONTENTS (Continued)

AGRICULTURAL RESOURCES ... 4-5
Corn .. 4-11
Corn Stover ... 4-13
Stover Collection ... 4-17
Municipal Solid Waste (MSW) .. 4-22
Energy Crops ... 4-24

5 CELLULOSIC ETHANOL PRODUCTION TECHNOLOGIES .. 5-1

THERMOCHEMICAL CONVERSION TECHNOLOGIES ... 5-2
ETHANOL SYNTHESIS CHEMISTRY VIA CHEMICAL CATALYST 5-3
Water Gas Shift ... 5-4
ETHANOL SYNTHESIS ... 5-4
Dow Chemical Company ... 5-4
Range Fuels .. 5-5
ExxonMobil .. 5-6
BP p.l.c. .. 5-6
ETHANOL VIA FERMENTATION OF SYNGAS ... 5-6
Syngas Fermentation Technology Overview .. 5-7
LIGNOCELLULOSIC MATERIAL—BACKGROUND .. 5-8
Pretreatment/Prehydrolysis ... 5-11
Saccharification ... 5-21
Cofermentation ... 5-25

6 ETHANOL PRODUCTION BY DILUTE ACID AND AMMONIA
PRETREATMENT OF MILLED CORN STOVER FOLLOWED BY ENZYMATIC
HYDROLYSIS AND COFERMENTATION ... 6-1

COMMERCIAL STATUS ... 6-5
PROCESS DESCRIPTION .. 6-10
Pretreatment and Ammonia Conditioning .. 6-26
CONTENTS (Continued)

Enzymatic Hydrolysis and Cofermentation .. 6-27
Distillation and Dehydration... 6-28
Cellulase Enzyme Preparation and Production.. 6-29
PROCESS DISCUSSION ... 6-29
Capacity and Technology .. 6-29
Feedstock ... 6-31
On-Stream Factor .. 6-31
Waste Treatment ... 6-32
Materials of Construction .. 6-32
CAPITAL AND PRODUCTION COSTS .. 6-33
DISCUSSION OF PRODUCT VALUE .. 6-34

7 ETHANOL FROM CORN COBS USING AMMONIA PRETREATMENT 7-1
 COMMERCIAL STATUS .. 7-2
 PROCESS DESCRIPTION .. 7-3
 Pretreatment and Conditioning .. 7-4
 Saccharification and Cofermentation .. 7-6
 Distillation and Dehydration ... 7-7
 Enzyme Preparation .. 7-7
 PROCESS DISCUSSION .. 7-19
 Process Productivities .. 7-19
 Pretreatment Process .. 7-19
 Feedstock ... 7-20
 On-Stream Factor .. 7-20
 Waste Treatment .. 7-20
 Materials of Construction ... 7-21
 CAPITAL AND PRODUCTION COSTS .. 7-21
 DISCUSSION OF PRODUCT VALUE .. 7-27
CONTENTS (Continued)

8 ETHANOL FROM CORN STOVER USING DILUTE ACID TREATMENT, LIME CONDITIONING, AND SIMULTANEOUS SACCHARIFICATION AND COFERMENTATION

- PROCESS DESCRIPTION ... 8-2
- Pretreatment and Lime Conditioning ... 8-17
- Saccharification and Cofermentation .. 8-18
- Distillation and Dehydration ... 8-19
- Enzyme Preparation .. 8-19
- PROCESS DISCUSSION ... 8-20
- Capacity and Technology .. 8-20
- Feedstock .. 8-20
- On-Stream Factor .. 8-20
- Waste Treatment ... 8-20
- Materials of Construction ... 8-21
- CAPITAL AND PRODUCTION COSTS ... 8-22
- DISCUSSION OF PRODUCT VALUE ... 8-22

9 ETHANOL FROM MUNICIPAL SOLID WASTE USING CONCENTRATED ACID HYDROLYSIS PROCESS

- COMMERCIAL STATUS ... 9-3
- PROCESS DESCRIPTION ... 9-4
- Hydrolysis .. 9-17
- Fermentation .. 9-18
- Distillation and Dehydration ... 9-18
- PROCESS DISCUSSION ... 9-19
- Process Productivities ... 9-19
- Decrystallizer/Hydrolysis .. 9-20
- Yeast Recycle .. 9-20
- Feedstock .. 9-20
CONTENTS (Continued)

On-Stream Factor ... 9-21
Waste Treatment ... 9-21
Materials of Construction .. 9-22
CAPITAL AND PRODUCTION COSTS 9-22
DISCUSSION OF PRODUCT VALUE 9-23

10 ETHANOL FROM CORN MILLING 10-1

WET MILLING PROCESS ... 10-2
Wet Milling Advances ... 10-4
DRY MILLING PROCESS ... 10-7
Dry Milling Advances ... 10-8
PROCESS DESCRIPTION ... 10-13
Saccharification ... 10-15
Anaerobic Fermentation .. 10-15
Distillation and Dehydration .. 10-15
DDGS Recovery ... 10-16
PROCESS DISCUSSION ... 10-22
Conventional Dry Mill Design ... 10-22
Anaerobic Fermentation .. 10-22
On-Stream Factor .. 10-22
DDGS Quality ... 10-22
Waste Treatment ... 10-23
CAPITAL AND PRODUCTION COSTS 10-23
DISCUSSION OF PRODUCT VALUE 10-24

11 ETHANOL FROM GASIFICATION OF CELLULOSIC BIOMASS FOLLOWED BY CHEMICAL SYNTHESIS ... 11-1

INTRODUCTION ... 11-1
CHEMISTRY ... 11-2
CONTENTS (Continued)

ALCOHOL SYNTHESIS VIA CHEMICAL CATALYST ... 11-3
PRODUCT CONVERSION AND SELECTIVITY ... 11-4
Selectivity ... 11-4
CO/Hydrogen Ratio ... 11-5
Carbon Dioxide Levels ... 11-5
PROCESS OVERVIEW .. 11-5
PROCESS DESCRIPTION ... 11-9
Section 100—Drying and Gasification ... 11-9
Section 200—Gasification ... 11-9
 Char Destruction .. 11-9
 Reforming ... 11-9
 Catalyst Regeneration ... 11-10
 Water Scrubbing ... 11-10
Section 300—Gas Conditioning ... 11-10
 Carbon Dioxide Removal .. 11-10
Section 400—Alcohol Synthesis .. 11-10
Section 500—Alcohol Purification ... 11-11
 Dehydration ... 11-11
 Distillation .. 11-11
PROCESS DISCUSSION ... 11-23
Feedstock .. 11-23
Capacity Factors ... 11-23
Product Yield and Carbon Efficiency ... 11-23
Drier Selection ... 11-23
Gasifier Design ... 11-24
Combustor .. 11-24
Ash Agglomeration ... 11-25
Gas Conditioning ... 11-25
CONTENTS (Concluded)

Scrubbing ... 11-25
Syngas Compression ... 11-25
Catalyst Selection ... 11-26
Reactor Selection ... 11-26
Syngas Purge and Recycle ... 11-26
MATERIALS OF CONSTRUCTION ... 11-26
WASTE STREAMS .. 11-26
PROCESS ECONOMICS .. 11-26
Capital Costs ... 11-26
Production Costs .. 11-27
DISCUSSION OF COSTS ... 11-27
Raw Materials .. 11-27
By-Product Credits .. 11-28
DISCUSSION OF PRODUCT VALUE .. 11-28
CONCLUSIONS ... 11-28

APPENDIX A PATENT SUMMARY TABLES .. A-1
APPENDIX B DESIGN AND COST BASES .. B-1
APPENDIX C CITED REFERENCES ... C-1
APPENDIX D PATENT REFERENCES BY COMPANY .. D-1
APPENDIX E PROCESS FLOW DIAGRAMS ... E-1
FIGURES

3.1 Historical Crude Oil Prices and Projections .. 3-3
3.2 Historical Natural Gas Spot Prices and Projections ... 3-3
3.3 Corn Wet Milling versus Corn Dry Milling for Ethanol Production 3-12
3.4 U.S. Prices for Fuel Ethanol and Corn ... 3-24
3.5 Recent Cash Prices for Hydrous and Anhydrous Ethanol in Brazil 3-25
4.1 Cumulative U.S. Biomass Quantities by Price .. 4-5
4.2 Total Arable Land in Crops .. 4-5
4.3 1995 World Crop Values ... 4-6
4.4 U.S. Corn Prices and Stocks-to-Use Ratio .. 4-7
4.5 Corn-based Ethanol Production and Bushels of Corn Used for Ethanol Production .. 4-8
4.6 Research and Technology Development Pathway toward Achieving Feedstock Price Target ... 4-9
4.7 IBSAL Model .. 4-10
4.8 U.S. Corn Area and Yield ... 4-11
4.9 Corn Yield Improvement Projection .. 4-12
4.10 Midwestern States Examined: Corn Density ... 4-13
4.11 the Effect of Plant Size on Collection Distance ... 4-17
4.12 Supply Curves for Round and Square Bales of Corn Stover, $/Dry Ton 4-19
4.13 Shipping Cost per Ton, 35 Miles .. 4-21
4.14 Corn Stover Delivery Scenarios .. 4-22
4.15 Municipal Solid Waste Composition ... 4-24
4.16 ORNL-BFDP Switchgrass Research Sites .. 4-26
4.17 Relationships between Total Cost and Yield .. 4-29
4.18 Ethanol Yields from Switchgrass, Corn and Stover ... 4-29
5.1 Major Components of Plant Materials ... 5-9
5.2 General Two-Stage Biochemical Conversion Process ... 5-10
5.3 Schematic Diagram of the Conversion of Biomass Feedstock to Ethanol Fuel.... 5-11
FIGURES (Continued)

5.4 Carbohydrates ..5-13
5.5 Dilute Acid Production of Hemicellulose Syrups ...5-15
5.6 Xylose Yield versus First Stage Dilute Acid Severity ...5-16
5.7 Xylose Release from Lignocellulosic Feed ...5-17
5.8 Bioethanol Production Using Fungal Pretreatment ..5-20
5.9 Hot Wash Effect on Simultaneous Saccharification and Fermentation Yield5-22
5.10 Saccharification Conversion for Various Enzymes ...5-23
5.11 Saccharification Conversion versus Enzyme Loading ...5-23
5.12 Corn Stover Hemicellulose Syrup Fermentation ...5-26
5.13 Modified Zymomonas Mobilis Pathway ...5-27
5.14 Prodigene Process for Production of Ethanol from Corn Stover5-31
6.1 Dilute-\(\mathrm{H}_2\mathrm{SO}_4\) (Acid) Pretreatment System—Pilot Scale ...6-2
6.2 Schematic Diagram of the Conversion of Milled Corn Stover Feedstock to 6-3
Ethanol Fuel ..5-26
6.3 Schematic Illustration of the Batch Steam Explosion Unit6-4
6.4 NREL’S Countercurrent Reactor ..6-4
6.5 Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment and Ammonia 6-8
Conditioning Followed by Saccharification and CofermentationE-3
7.1 Ethanol from Corn Cobs by Ammonia Pretreatment ProcessE-9
8.1 Simplified Block Flow Diagram for Ethanol from Corn Stover Using Dilute Acid 8-2
Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
8.2 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, E-15
and Simultaneous Saccharification and Cofermentation
9.1 Simplified Process Flow Diagram for Concentrated Acid Hydrolysis Process 9-2
9.2 Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process .E-21
10.1 \(\alpha\)-Amylose and Amylopectin ..10-1
10.2 Corn Wet-Milling Process Overview ...10-4
10.3 Comparison of Conventional and Enzymatic Corn Wet Milling10-5
FIGURES (Concluded)

10.4 Starch Yield as Function of Enzyme Addition 10-6
10.5 Corn Dry Milling .. 10-8
10.6 Ethanol Production and Residual Starch .. 10-9
10.7 Corn Dry Grind Process with Fiber Conversion to Ethanol 10-11
10.8 Multiple Pressure Distillation + PSA Molecular Sieve Process 10-12
10.9 Multiple Pressure Distillation + BNRI VP Membrane Process 10-13
10.10 Ethanol from Corn Dry Mill .. E-27
11.1 Range Fuels Process Block Flow ... 11-5
11.2 Thermochemical Block Flow Diagram .. 11-6
11.4 Indirectly Heated Gasifier ... 11-24
11.5 Cumulative Biomass Supply .. 11-28
11.3 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical
 Syngas ... E-31
TABLES

2.1 Capital Investment Comparison ..2-7
2.2 Cellulosic Ethanol Process Economics ...2-9
3.1 Top Seven U.S. Ethanol Producers as of July 2011 ...3-13
3.2 Major Brazilian Ethanol Producers as of January 20113-14
3.3 Major U.S. Cellulosic Ethanol Projects ...3-17
3.4 Ethanol Import Tariffs ..3-22
4.1 Available Biomass in the United States ..4-4
4.2 Potential Bioethanol Production ..4-6
4.3 Major Energy Inputs for Selected Crops ...4-9
4.4 Corn and Stover Production in 2000 ...4-14
4.5 Corn and Stover Compositions ..4-15
4.6 Corn Stover Composition Range ..4-15
4.7 Theoretical Ethanol Yield from Corn Stover Fractions4-16
4.8 Estimated Costs for Corn Stover Harvest ...4-18
4.9 Cost Variation under Low and High Resource Availability4-18
4.10 One Pass Harvest and Rail System Economics ...4-20
4.11 Generation and Recovery of MSW Materials 20064-23
4.12 Lignocellulosic Crops ..4-25
4.13 Chemical Composition of Switchgrass ..4-27
4.14 Switchgrass Yield Data ..4-28
4.15 Comparative Traits of Corn and Switchgrass ...4-28
5.1 Chemical Composition of Different Gasification Feedstocks5-3
5.2 Dow Global Technologies Reaction Summary ..5-5
5.3 CAFI 1 Pretreatment Reaction Conditions ..5-12
5.4 Effect of 121°C Pretreatment on Different Feedstocks5-14
5.5 Comparison of Pretreatment Processes ...5-19
5.6 Cellulase Enzyme Requirements for Various Feedstocks5-24
5.7 Recombinant Saccharomyces Performance at 9,000 Liters5-28
5.8	Microorganism Performance in the Presence of Lignocellulose Sugars5-30
6.1	Theoretical Ethanol Yields ..6-3
6.2	NREL Collaborations ..6-7
6.3	Ethanol from Milled Corn Stover Using Dilute Acid and Ammonia Pretreatment Followed by Saccharification and Cofermentation Design Bases ..6-11
6.4	Ethanol from Milled Corn Stover Using Dilute Acid and Ammonia Pretreatment Followed by Saccharification and Cofermentation Stream Flows ..6-12
6.5	Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment, Ammonia Conditioning, and SACCHARIFICATION AND COFERMENTATION Major Equipment ...6-22
6.6	Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment, Ammonia Conditioning, and SACCHARIFICATION AND COFERMENTATION Utilities Summary ..6-25
6.7	Pretreatment Reactions and their Conversions ..6-26
6.8	Saccharification Reactions and Conversions ..6-27
6.9	Cofermentation Reactions and Conversions ..6-28
6.10	Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment, Ammonia Conditioning, and SACCHARIFICATION AND COFERMENTATION Total Capital Investment ...6-36
6.11	Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment, Ammonia Conditioning, and SACCHARIFICATION AND COFERMENTATION Capital Investment by Section ..6-37
6.12	Ethanol from Milled Corn Stover Using Dilute Acid Pretreatment, Ammonia Conditioning, and SACCHARIFICATION AND COFERMENTATION Production Costs ..6-39
7.1	Solids from Base Pretreatment of Corn Stover ..7-2
7.2	Digestibility of Disc Refined Pretreated Stover ..7-3
7.3	Ethanol from Corn Cobs Using Ammonia Pretreatment Design Bases7-5
7.4	Saccharification Reactions and Conversions ..7-6
7.5	Ethanol from Corn Cob by Ammonia Pretreatment Process Stream Flows7-8
TABLES (Continued)

7.6 Ethanol from Corn Cob by Ammonia Pretreatment Process
Major Equipment .. 7-15

7.7 Ethanol from Corn Cob by Ammonia Pretreatment Process
Utilities Summary .. 7-18

7.8 Ethanol from Corn Cob by Ammonia Pretreatment Process
Total Capital Investment .. 7-22

7.9 Ethanol from Corn Cob by Ammonia Pretreatment Process
Capital Investment by Section .. 7-23

7.10 Ethanol from Corn Cob by Ammonia Pretreatment Process
Production Costs ... 7-25

8.1 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Design Bases ... 8-3

8.2 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Stream Flows ... 8-4

8.3 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Major Equipment .. 8-13

8.4 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Utilities Summary .. 8-16

8.5 Pretreatment Hydrolyzer Reactions and Conversions 8-17

8.6 Saccharification Reactions and Conversions 8-18

8.7 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Total Capital Investment .. 8-24

8.8 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Capital Investment by Section ... 8-25

8.9 Ethanol from Corn Stover Using Dilute Acid Pretreatment, Lime Conditioning, and Simultaneous Saccharification and Cofermentation
Production Costs ... 8-27

9.1 Concentrated Acid and Dilute Acid Hydrolysis Process Comparison 9-1

9.2 Theoretical Ethanol Yields .. 9-3
TABLES (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Design Bases</td>
<td>9-5</td>
</tr>
<tr>
<td>9.4</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Stream Flows</td>
<td>9-6</td>
</tr>
<tr>
<td>9.5</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Major Equipment</td>
<td>9-13</td>
</tr>
<tr>
<td>9.6</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Utilities Summary</td>
<td>9-16</td>
</tr>
<tr>
<td>9.7</td>
<td>Hydrolyzer Reactions and Conversions</td>
<td>9-17</td>
</tr>
<tr>
<td>9.8</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Total Capital Investment</td>
<td>9-24</td>
</tr>
<tr>
<td>9.9</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Capital Investment by Section</td>
<td>9-25</td>
</tr>
<tr>
<td>9.10</td>
<td>Ethanol from Municipal Solid Waste by Concentrated Acid Hydrolysis Process Production Costs</td>
<td>9-26</td>
</tr>
<tr>
<td>10.1</td>
<td>Corn Wet Milling Coproducts</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2</td>
<td>Yield Comparison between Enzymatic and Conventional Corn Wet Milling</td>
<td>10-6</td>
</tr>
<tr>
<td>10.3</td>
<td>Continuous Fermentation Productivities</td>
<td>10-10</td>
</tr>
<tr>
<td>10.4</td>
<td>Co-Immobilized Enzyme-Microbe Fluidized Bed Yields</td>
<td>10-10</td>
</tr>
<tr>
<td>10.5</td>
<td>Ethanol from Corn Dry Mill Design Bases</td>
<td>10-14</td>
</tr>
<tr>
<td>10.6</td>
<td>Ethanol from Corn Dry Mill Stream Flows</td>
<td>10-17</td>
</tr>
<tr>
<td>10.7</td>
<td>Ethanol from Corn Dry Mill Major Equipment</td>
<td>10-19</td>
</tr>
<tr>
<td>10.8</td>
<td>Ethanol from Corn Dry Mill Utilities Summary</td>
<td>10-21</td>
</tr>
<tr>
<td>10.9</td>
<td>Ethanol from Corn Dry Mill Total Capital Investment</td>
<td>10-25</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

10.10 Ethanol from Corn Dry Mill
Capital Investment by Section
 .. 10-26

10.11 Ethanol from Corn Dry Mill
Production Costs
 .. 10-28

11.1 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Design Bases
 .. 11-7

11.2 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Stream Flows
 .. 11-12

11.3 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Major Equipment
 .. 11-19

11.4 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Utilities Summary
 .. 11-22

11.5 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Total Capital Investment
 .. 11-29

11.6 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Capital Investment by Section
 .. 11-30

11.7 Ethanol from Gasification of Cellulosic Biomass Followed by Chemical Synthesis
Production Costs
 .. 11-32