Abstract

Process Economics Program Report 278
BIOFUELS FROM ALGAE
(December 2010)

Biofuels have received considerable attention recently. This attention stems from many factors, some of which are recent developments in biofuels production technology, the quest for independence from foreign oil, reduction in emissions and greenhouse gases and an improvement in the local economy. Additionally, government supports in the form of research grants for technology development, tax incentives and mandates have made biofuels more attractive than before.

Algae biofuel technologies, being the third generation biofuel technology, hold the promise to enable production of high quality biofuel while offsetting carbon emissions. Biofuels from algae appear to solve the problems associated with first- and second-generation biofuel technologies. Algae are fast growing organisms that need sunlight, carbon dioxide and water to generate energy that is stored in algal cells in the form of lipids. These lipids can be extracted from algal cells and converted to biofuels such as biodiesel or renewable diesel. Many companies, both small and large, have announced investments in algae biofuel technology. Of these, the major investment announcement (worth $600 million) was made by ExxonMobil in July 2009. The U.S. government is also supporting research in the form of grants and tax incentives. While some pilot plants are being built to eventually commercialize the algae biofuel technology, no commercial plant exists yet.

In this report, PEP presents process designs and associated economics for producing 30 million gallons/yr (100,000 mt/yr) of biodiesel using three different microalgal technologies. We examine the production of algal oil from microalgae grown using the open raceway pond method followed by its conversion to biodiesel. We also examine the process design and economics of producing biodiesel from microalgae using photobioreactor technology. Both of these photo-autotrophic technologies are then compared in design and economics to heterotrophic microalgal technology where glucose is used as a carbon source in the absence of sunlight or other light.

This report will be of interest to biofuels producers, technologists, investment communities and the government looking to evaluate algae biofuel technologies vis-à-vis other green technologies.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION ..1-1

2 SUMMARY ...2-1

3 INDUSTRY STATUS...3-1
 ADVANTAGES OF ALGAL FEEDSTOCKS ..3-2

4 TECHNOLOGY REVIEW ..4-1
 ALGAL BIOLOGY ..4-1
 Algae Strain Isolation ..4-1
 Microalgae ...4-3
 PHOTOSYNTHESIS ..4-3
 Photosynthetically Active Radiation (PAR) ...4-5
 Photosynthetic Electron Transport and Phosphorylation4-6
 Outer Light-Harvesting Antennae ...4-6
 Photosystem II ...4-7
 Plastoquinon, the Cytochrome b2/f Complex and Plastocyanin4-7
 Photosystem I ..4-7
 ATP Synthase/ATPase ..4-7
 Dark Reactions of Photosynthesis ..4-7
 Carbon Assimilation ...4-7
 Photorespiration ..4-8
 ALGAE GROWTH AND HARVESTING ...4-8
 Open Raceway Ponds ...4-10
 Photobioreactors (PBR) ...4-11
 MICROALGAL OIL/LIPID EXTRACTION ..4-14
 BIODIESEL PRODUCTION AND CHEMISTRY ..4-14
 Transesterification ...4-15
CONTENTS (Continued)

5 OPEN SYSTEM—RACEWAY PONDS ... 5-1

PADDLE WHEEL IN OPEN RACEWAY POND ... 5-4
MIXING IN THE OPEN RACEWAY POND .. 5-5
POND DEPTH ... 5-6
CO₂ SUPPLY ... 5-6
POND TEMPERATURE ... 5-6
ALGAE MASS CULTURE IN OPEN PONDS ... 5-7
WATER CONSERVATION ... 5-8
PROCESS DESCRIPTION ... 5-8

Overview ... 5-9

SECTION 100—MICROALGAL GROWTH BY OPEN RACEWAY POND METHOD ... 5-31

SECTION 200—MICROALGAL CONCENTRATION AND ALGAL OIL EXTRACTION .. 5-31

SECTION 300—BIODIESEL SYNTHESIS (TRANSESTERIFICATION) 5-32

SECTION 400—BIODIESEL AND METHANOL RECOVERY 5-32
Methanol Recovery .. 5-32
Washing .. 5-33
Drying ... 5-33
Biodiesel Bleaching .. 5-33

SECTION 500—GLYCERIN RECOVERY .. 5-33
Glycerin Pretreatment ... 5-33
Glycerin Concentration .. 5-33
Glycerin Purification .. 5-34

PROCESS DISCUSSION ... 5-34
Capacity ... 5-34

Microalgal Growth and Algal Oil Extraction ... 5-34
CONTENTS (Continued)

Microalgae Culture ..5-34
Open Raceway Ponds ... 5-34
Steam Lysing ... 5-35
Algal Oil Extraction and Concentration ... 5-35
Transesterification .. 5-35
Catalyst Selection ... 5-35
Reactor Design ... 5-35
Biodiesel Purification .. 5-35
Glycerin Recovery and Purification ... 5-36
MATERIALS OF CONSTRUCTION .. 5-36
PRODUCT QUALITY ... 5-36
CAPITAL AND PRODUCTION COSTS .. 5-37
DISCUSSION OF CAPITAL AND PRODUCTION COSTS 5-38
DISCUSSION OF PROCESS COSTS ... 5-39
Raw Material Costs ... 5-39
By-Product Credit .. 5-40
Capital Costs ... 5-40

6 MICROALGAE USING PHOTOBIOREACTOR TECHNOLOGY 6-1
 TUBULAR PHOTOBIOREACTORS ... 6-1
 FLAT PANEL OR PLATE PHOTOBIOREACTORS 6-4
 VERTICAL CYLINDERS/SLEEVES .. 6-5
PHOTOBIOREACTOR DESIGN CONSIDERATIONS 6-6
Lighting .. 6-7
Surface to Volume (S/V) Ratio Consideration ... 6-8
PBR Orientation and Inclination ... 6-8
Mixing .. 6-9
Nutrients ... 6-10

© SRI Consulting

PEP Report 278
CONTENTS (Continued)

Carbon Dioxide Supply..6-10
Water Supply ...6-11
Oxygen Removal ...6-12
Temperature Control ...6-13
pH Control ..6-13

PROCESS DESCRIPTION—MICROALGAE FROM PHOTOBIOREACTOR TECHNOLOGY ..6-13
Overview ...6-14
Degasser and Length of PBR Tubes ..6-16

SECTION 100—MICROALGAL GROWTH BY PHOTOBIOREACTOR METHOD ...6-37

SECTION 200—MICROALGAL CONCENTRATION AND ALGAL OIL EXTRACTION ...6-37

SECTION 300—BIO DIESEL SYNTHESIS (TRANSESTERIFICATION) ...6-38

SECTION 400—BIO DIESEL AND METHANOL RECOVERY ...6-39
Methanol Recovery ...6-39
Washing ...6-39
Drying ...6-39
Biodiesel Bleaching ...6-39

SECTION 500—GLYCERIN RECOVERY ...6-39
Glycerin Pretreatment ...6-39
Glycerin Concentration ..6-39
Glycerin Purification ...6-40

PROCESS DISCUSSION ..6-40
Capacity ...6-40
Microalgal Growth and Algal Oil Extraction ..6-41
Microalgae Culture ..6-41
Photobioreactor System ..6-41
Steam Lysing ...6-41
Methanol Recovery...7-22
Washing..7-22
Drying ...7-22
Biodiesel Bleaching ..7-22
SECTION 500—GLYCERIN RECOVERY ...7-22
Glycerin Pretreatment...7-22
Glycerin Concentration...7-22
Glycerin Purification..7-23
PROCESS DISCUSSION...7-23
Capacity..7-23
Microalgal Growth and Algal Oil Extraction ...7-24
Microalgae Culture ...7-24
 Glucose..7-24
 Heterotrophic Fermentation...7-24
 Steam Lysing...7-24
 Algal Oil Extraction and Concentration..7-24
Transesterification ..7-24
 Catalyst Selection ..7-24
Reactor Design..7-24
Biodiesel Purification ..7-25
Glycerin Recovery and Purification ..7-25
MATERIALS OF CONSTRUCTION ...7-25
PRODUCT QUALITY ...7-25
Capital and Production Costs ...7-25
DISCUSSION OF CAPITAL AND PRODUCTION COSTS..7-26
DISCUSSION OF PROCESS COSTS ...7-26
Raw Material Costs ..7-26
By-Product Credit ..7-26
CONTENTS (Concluded)

Capital Costs .. 7-27

APPENDIX A PATENT SUMMARY TABLES .. A-1

APPENDIX B DESIGN AND COST BASES ... B-1

APPENDIX C CITED REFERENCES ... C-1

APPENDIX D PROCESS FLOW DIAGRAMS.. D-1
FIGURES

3.1 Forces at Work in the Biodiesel Industry ... 3-4

3.2 Interdependencies across the Algal Biofuels and Co-Products Supply Chain (R2780012) .. 3-7

4.1 Light and Dark Reactions in Photosynthesis .. 4-4

4.2 Photosynthesis Light Response Curves .. 4-5

4.3 The ‘Z’ Scheme for Photosynthetic Electron Flow from Water to NADPH₂ 4-6

4.4 Simplified Process Flow Diagram of Biodiesel Production from Microalgae 4-8

4.5 Combined Open Raceway Pond for Microalgae Growth .. 4-11

4.6 Horizontal Tubular Photobioreactor Assembly ... 4-12

4.7 Triglyceride Structure ... 4-14

4.8 Reaction 1: Transesterification of Triglycerides to Methyl Ester (FAME) 4-16

5.1 Open Raceway Pond for Microalgae Cultivation ... 5-2

5.2 Circular Pond for Microalgae Cultivation .. 5-3

5.3 Biodiesel from Open Raceway Pond Microalgae Process Process Flow Diagram ... D-3

6.1 Types of Tubular PBRs ... 6-2

6.2 Flat Plate PBRs .. 6-5

6.3 Vertical Bag and Vertical Sleeve PBRs ... 6-6

6.4 A Horizontal Tubular PBR with Degasser Unit (R278009) 6-15

6.5 Horizontal Tubular Fence-Like PBR Arrangement (R278009) 6-16

6.6 Biodiesel from Photobioreactor Microalgae Process Process Flow Diagram ... D-13

7.1 Biodiesel from Heterotrophic Microalgae Process Process Flow Diagram D-23
TABLES

2.1 Comparison of Capital and Production Costs of Producing 30 Million Gallons/Year of Biodiesel Using Three Different Methods of Microalgae Growth—Open Raceway Ponds, Photobioreactors, and Heterotrophic Method
2-3

3.1 World Biodiesel Production by Region—2007 and 2012
3-5

3.2 Differences in Feedstocks Selected for Biodiesel Production by Region
3-5

3.3 Comparison of Sources of Biodiesel in terms of Yield and Land Requirement
(R278009)
3-6

4.1 Oil Content of Some Microalgal Species
4-10

4.2 Comparison of Open and Closed Algal Cultivation Plants (R2780028)
4-13

4.3 Biodiesel Source Compositions
4-15

5.1 Algal Oil from Open Raceway Pond Method
Design Bases
5-12

5.2 Biodiesel Production from Algal Oil by Alkaline Catalysis
Design Bases
5-13

5.3 Microalgal Biodiesel from Open Raceway Ponds
Stream Flows
5-15

5.4 Microalgal Biodiesel from Open Raceway Ponds & Alkaline Catalysis
Major Equipment
5-26

5.5 Microalgal Biodiesel from Open Raceway Ponds & Alkaline Catalysis
Utilities Summary
5-30

5.6 Comparison of Biodiesel Specifications
5-37

5.7 Microalgal Biodiesel from Open Raceway Ponds & Alkaline Catalysis
Total Capital Investment
5-41

5.8 Microalgal Biodiesel from Open Raceway Ponds & Alkaline Catalysis
Capital Investment by Section
5-42

5.9 Microalgal Biodiesel from Open Raceway Ponds & Alkaline Catalysis
Production Costs
5-44

6.1 Algal Oil from Photobioreactor Method
Design Bases
6-19

6.2 Biodiesel Production from Algal Oil by Alkaline Catalysis
Design Bases
6-20

6.3 Microalgal Biodiesel from Photobioreactor System
Stream Flows
6-22
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Microalgal Biodiesel from Photobioreactor System Major Equipment</td>
</tr>
<tr>
<td>6.5</td>
<td>Microalgal Biodiesel from Photobioreactor System Utilities Summary</td>
</tr>
<tr>
<td>6.6</td>
<td>Biodiesel from Algae Using Photobioreactor (PBR) Technology Total Capital Investment</td>
</tr>
<tr>
<td>6.7</td>
<td>Biodiesel from Algae Using Photobioreactor (PBR) Technology Capital Investment by Section</td>
</tr>
<tr>
<td>6.8</td>
<td>Biodiesel from Algae Using Photobioreactor (PBR) Technology Production Costs</td>
</tr>
<tr>
<td>7.1</td>
<td>Algal Oil from Heterotrophic Microalgae Growth Design Bases</td>
</tr>
<tr>
<td>7.2</td>
<td>Biodiesel Production from Algal Oil by Alkaline Catalysis Design Bases</td>
</tr>
<tr>
<td>7.3</td>
<td>Microalgae Oil from Heterotrophic Algae Stream Flows</td>
</tr>
<tr>
<td>7.4</td>
<td>Biodiesel from Heterotrophic Algae Process & Alkaline Catalysis Process Major Equipment</td>
</tr>
<tr>
<td>7.5</td>
<td>Biodiesel from Algal Oil via Alkaline Catalysis Utilities Summary</td>
</tr>
<tr>
<td>7.6</td>
<td>Biodiesel from Algae Using Heterotrophic Algae Process (Fermentation) Total Capital Investment</td>
</tr>
<tr>
<td>7.7</td>
<td>Biodiesel from Algae Using Heterotrophic Algae Process (Fermentation) Capital Investment by Section</td>
</tr>
<tr>
<td>7.8</td>
<td>Biodiesel from Algae Using Heterotrophic Algae Process (Fermentation) Production Costs</td>
</tr>
</tbody>
</table>