Abstract
Process Economics Program Report 267
PROPYLENE PRODUCTION
(October 2008)

Propylene has traditionally been recovered as by-products of petroleum and petrochemical operations. On-purpose production of propylene has become more attractive as less costly supplies from traditional sources become inadequate to meet projected demand. This report covers two on-purpose propylene production technologies and economics - UOP licensed Oleflex propane dehydrogenation process and KBR licensed Superflex process - and examines the driving forces behind these on-purpose technologies.

For propylene production from propane, the primary economic incentive increases with increasing price differential between the feed and the product. Catalytic processes such as Superflex that convert low value hydrocarbon streams with a high degree of selectivity to propylene are likely to find a reasonable market in business and economic environments that cannot justify a grass roots steam cracker or where FCC naphtha is in surplus relative to the needs of the refinery’s gasoline pool.

Supply/demand balances for propylene are also included. This report provides chemical producers and refiners an update on propane dehydrogenation and other on-purpose propylene production technologies, economics, and market dynamics to identify future opportunities.
Report No. 267

PROPYLENE PRODUCTION

by VICTOR WAN

October 2008

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY</td>
<td>xiii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>2 SUMMARY</td>
<td>2-1</td>
</tr>
<tr>
<td>COMMERCIAL ASPECTS</td>
<td>2-1</td>
</tr>
<tr>
<td>TECHNOLOGY ASPECTS</td>
<td>2-3</td>
</tr>
<tr>
<td>Superflex Process</td>
<td>2-3</td>
</tr>
<tr>
<td>UOP Oleflex Propane Dehydrogenation Process</td>
<td>2-3</td>
</tr>
<tr>
<td>ECONOMIC ASPECTS</td>
<td>2-4</td>
</tr>
<tr>
<td>Propylene by the Superflex Process</td>
<td>2-5</td>
</tr>
<tr>
<td>Propylene by the Oleflex Process</td>
<td>2-5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>2-6</td>
</tr>
<tr>
<td>3 PROPYLENE INDUSTRY</td>
<td>3-1</td>
</tr>
<tr>
<td>CHARACTERISTICS OF THE PROPYLENE INDUSTRY</td>
<td>3-1</td>
</tr>
<tr>
<td>PROPYLENE CHEMICAL USES</td>
<td>3-2</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>3-3</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>3-4</td>
</tr>
<tr>
<td>Propylene Oxide</td>
<td>3-4</td>
</tr>
<tr>
<td>Oxo Alcohols</td>
<td>3-5</td>
</tr>
<tr>
<td>Cumene</td>
<td>3-6</td>
</tr>
<tr>
<td>Acrylic Acid and Esters</td>
<td>3-6</td>
</tr>
<tr>
<td>Isopropyl Alcohol (IPA)</td>
<td>3-7</td>
</tr>
<tr>
<td>Polygas Chemicals (Nonene, Dodecene, Heptenes)</td>
<td>3-8</td>
</tr>
<tr>
<td>Other</td>
<td>3-8</td>
</tr>
<tr>
<td>Propylene Grades for Chemical Manufacture</td>
<td>3-9</td>
</tr>
<tr>
<td>NONCHEMICAL USES</td>
<td>3-11</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

- Gasoline Components ... 3-11
- Gasoline Alkylate .. 3-12
- Polymer Gasoline (Polygas) .. 3-12
- Dimersol ... 3-12
- Fuels .. 3-12
- PROPYLENE SUPPLY AND DEMAND .. 3-12
 - World ... 3-12
 - United States .. 3-19
 - Western Europe .. 3-22
 - China ... 3-23
- PRICES ... 3-24
- TRANSPORTATION AND STORAGE .. 3-25
- ENVIRONMENTAL ISSUES .. 3-25

4 TECHNOLOGY REVIEW OF PROPYLENE PRODUCTION 4-1

- PROPYLENE FROM STEAM CRACKERS 4-2
 - Commercial Steam Cracking Processes 4-5
 - Linde AG ... 4-5
 - KBR .. 4-5
 - Lummus Technology (formerly ABB Lummus Global) 4-6
 - Shaw Energy & Chemicals (formerly Stone & Webster) 4-6
 - Technip .. 4-7
 - Steam Cracking Propylene Yields ... 4-7
 - Steam Cracking Feedstock Flexibility 4-10

- PROPYLENE FROM PETROLEUM REFINING 4-11
 - Conventional Fluid Catalytic Cracking 4-11
 - Propylene from Conventional FCC Units 4-14
 - Maximize FCC Propylene ... 4-15
CONTENTS (Continued)

Feedstocks and Cracking Severity ... 4-15
Catalysts and Additives .. 4-16
Deep Catalytic Cracking (DCC) ... 4-19
Deep Catalytic Cracking (DCC) Integration ... 4-22
Refinery Propylene from Thermal Processes ... 4-23
Nonchemical Uses of Refinery Propylene .. 4-23
 Alkylation .. 4-23
 Propylene Oligomerization .. 4-24
 Fuel Uses ... 4-24
Recovery of Refinery Propylene for Chemical Uses 4-25
DIRECT PRODUCTION OF PROPYLENE .. 4-27
Propylene via Propane Dehydrogenation (PDH) .. 4-27
 UOP Oleflex Process ... 4-28
 CATOFIN Process .. 4-29
 Krupp Uhde STAR Process ... 4-31
 Linde/Statoil/Borealis PDH Process ... 4-32
 FBD-3 Process .. 4-32
Propylene by Metathesis ... 4-33
 Lummus Olefin Conversion Technology (OCT) 4-34
 Axens Meta-4 .. 4-36
EMERGING PROPYLENE ROUTES .. 4-37
SUPERFLEX Process .. 4-37
Methanol to Olefins (MTO) ... 4-38
Methanol to Propylene (MTP) .. 4-39
The Total Petrochemicals/UOP Olefin Cracking Process (OCP) 4-40
Mobil Olefins Interconversion (MOI) .. 4-41
Propylur Process ... 4-42
High-Severity FCC (HS-FCC) .. 4-42
CONTENTS (Continued)

PetroFCC (UOP) .. 4-43
Catalytic Pyrolysis Process (CPP) ... 4-44
The Advanced Catalytic Olefins (ACO) Process .. 4-45
Indmax Fluid Catalytic Cracking (I-FCC Process) ... 4-46
Lummus’ Selective Component Cracking Process (SCC) 4-47
MAXOFIN Process ... 4-47

5 PROPYLENE BY THE SUPERFLEX PROCESS .. 5-1
HISTORICAL BACKGROUND .. 5-1
PROCESS REVIEW ... 5-5
Chemistry .. 5-6
Catalyst ... 5-7
Fluidized Reactor System .. 5-9
Operating Conditions .. 5-10
Low Pressure Olefin Recovery Process .. 5-11
Feedstock and Products .. 5-11
PROCESS DESCRIPTION ... 5-17
Section 100 - Reaction and Regeneration .. 5-18
Section 200 - Compression and Treating ... 5-19
Section 300 - Fractionation .. 5-20
PROCESS DISCUSSION ... 5-33
Section 100 - Reactor - Regenerator .. 5-33
Section 200 - Compression and Treating ... 5-34
Section 300 - Fractionation .. 5-34
COST ESTIMATES ... 5-34
Capital Cost ... 5-34
Production Cost ... 5-38
6 PROPYLENE FROM PROPANE BY THE OLEFLEX PROCESS 6-1

HISTORICAL BACKGROUND ... 6-1

PROCESS REVIEW .. 6-3

Process Chemistry .. 6-4

Role of Catalysts and Supports .. 6-5

Catalyst Stability and Regeneration ... 6-6

Heat of Reaction .. 6-7

PROCESS DESCRIPTION .. 6-7

Section 100 - Reaction and Regeneration ... 6-8

Section 200 - Product Recovery .. 6-10

 Hydrogen Recovery ... 6-10

 Product Recovery ... 6-11

PROCESS DISCUSSION .. 6-14

Feedstocks and Products .. 6-14

Catalyst ... 6-15

Section 100 - Reactor - Regenerator ... 6-16

Section 200 - Product Recovery .. 6-17

Material of Construction .. 6-17

Environmental and Safety Aspects ... 6-17

 Regeneration Off-Gas .. 6-17

 Catalyst .. 6-17

COST ESTIMATES .. 6-26

Capital Cost ... 6-26

Production Cost .. 6-26

Profitability .. 6-27
FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>U.S Polymer-Grade Propylene-to-Ethylene Production and Price Ratios 3-25</td>
</tr>
<tr>
<td>4.1</td>
<td>Typical FCC Reactor-Regenerator System ... 4-13</td>
</tr>
<tr>
<td>4.2</td>
<td>Typical FCC Feed & Product Streams ... 4-25</td>
</tr>
<tr>
<td>4.3</td>
<td>Oleflex Process for Propylene Production ... 4-29</td>
</tr>
<tr>
<td>4.4</td>
<td>Catofin Process for Propylene Production ... 4-31</td>
</tr>
<tr>
<td>4.5</td>
<td>OCT Process for Propylene Production ... 4-35</td>
</tr>
<tr>
<td>4.6</td>
<td>OCT Commercial Application Example ... 4-36</td>
</tr>
<tr>
<td>4.7</td>
<td>Axens Meta-4 Process .. 4-37</td>
</tr>
<tr>
<td>4.8</td>
<td>Schematic of 30 BPD HS-FCC Demo Unit ... 4-43</td>
</tr>
<tr>
<td>4.9</td>
<td>ACO Process Flow Scheme ... 4-46</td>
</tr>
<tr>
<td>4.10</td>
<td>Maxofin FCC Scheme .. 4-48</td>
</tr>
<tr>
<td>5.1</td>
<td>Sasol SUPERFLEX Timeline ... 5-4</td>
</tr>
<tr>
<td>5.2</td>
<td>Sasol Project Turbo: SUPERFLEX Unit & Interfaces 5-5</td>
</tr>
<tr>
<td>5.3</td>
<td>Butene Conversion Via Bimolecular Reaction .. 5-7</td>
</tr>
<tr>
<td>5.4</td>
<td>Mechanism for Phosphorous Bonding to the Zeolite Framework 5-8</td>
</tr>
<tr>
<td>5.5</td>
<td>SUPERFLEX Process Flow Diagram .. E-3</td>
</tr>
<tr>
<td>6.1</td>
<td>Reactions by Platinum and Acid Sites in Light Paraffin Dehydrogenation with Unmodified Catalyst .. 6-5</td>
</tr>
<tr>
<td>6.2</td>
<td>Temperatures Required to Achieve 10 and 40% Conversion of nC₂-C₁₅ at 1 atm .. 6-7</td>
</tr>
<tr>
<td>6.3</td>
<td>Propylene from Propane by the Oleflex Process Flow Diagram E-9</td>
</tr>
<tr>
<td>6.4</td>
<td>Oleflex Regeneration Section ... 6-10</td>
</tr>
<tr>
<td>6.5</td>
<td>Partial Condensation Cryogenic Process .. 6-11</td>
</tr>
<tr>
<td>6.6</td>
<td>Schematic of an UOP MTBE Complex .. 6-15</td>
</tr>
</tbody>
</table>
TABLES

2.1 2007 World Supply/Demand for Propylene in Chemical Uses 2-2
2.2 World Consumption of Propylene in Chemical Applications-2007 2-2
2.3 Economics for Production of Propylene ... 2-6
3.1 World Propylene Consumption by End Use, 2007-2012 3-3
3.2 Propylene Grades for Chemical Manufacture ... 3-10
3.3 World Propylene Supply and Demand, 2007-2012 ... 3-13
3.4 World Producers of Propylene from Propane Dehydrogenation 3-13
3.5 World Producers of Propylene from Ethylene/Butylene Metathesis 3-16
3.6 World Capacity of Propylene by Region, 2007-2012 .. 3-18
3.7 Five Largest U.S. Producers of Propylene by Grade .. 3-19
3.8 Maximum U.S. Availability of Propylene by Source .. 3-20
3.9 U.S. Production of Propylene for Chemical Use ... 3-21
3.10 U.S. Coproduct Propylene-to-Ethylene Production Ratio 3-22
3.11 U.S. Market Prices for Propylene .. 3-24
4.1 Yields of Coproduct Propylene from Steam Cracking ... 4-8
4.2 Naphtha Cracking Under Mild and High Severity Operations 4-8
4.3 FCC Operating Modes ... 4-14
4.4 LPG Olefins Yield for 3% Level of BASF's Maximum Olefins Additive 4-19
4.5 Commercial DCC Units ... 4-20
4.6 Typical DCC Operating Conditions ... 4-21
4.7 DCC Light Olefin Yields ... 4-21
4.8 DCC, FCC, and Steam Cracking Products ... 4-22
4.9 Typical Propylene Quality Specifications .. 4-26
4.10 PetroFCC Yields from VGO .. 4-44
4.11 Maxofin Process Yields ... 4-49
5.1 Sasol SUPERFLEX Timeline ... 5-8
5.2 SUPERFLEX and FCC Operating Conditions ... 5-10
TABLES (Continued)

5.3 Typical Cracked Naphtha Feedstock Characterization .. 5-12
5.4 Estimated Hydrocarbon SUPERFLEX Reactor Effluent Yields from Cracked Naphtha ... 5-12
5.5 Estimated SUPERFLEX Overall Material Balance for Cracked Naphtha 5-13
5.6 Typical Ultimate SUPERFLEX Yields from Typical Feedstocks 5-14
5.7 Typical Polymer Grade Propylene Specifications ... 5-15
5.8 Polymer Grade Ethylene Specifications ... 5-16
5.9 SUPERFLEX Process for Light Olefins
 Design Bases and Assumptions .. 5-21
5.10 FCC Light Naphtha (Fresh Feedstock) Characterization 5-23
5.11 SUPERFLEX Process for Light Olefins
 Stream Flows .. 5-24
5.12 SUPERFLEX Process
 Major Equipment .. 5-29
5.13 SUPERFLEX Process
 Utilities Summary .. 5-32
5.14 SUPERFLEX Process
 Total Capital Investment .. 5-36
5.15 SUPERFLEX Process
 Capital Investment by Section .. 5-37
5.16 SUPERFLEX Process
 Production Costs .. 5-40
6.1 Propylene from Propane by Oleflex Dehydrogenation Process
 Design Bases and Assumptions .. 6-13
6.2 Performances of Oleflex Dehydrogenation Process ... 6-15
6.3 UOP Oleflex Catalyst Development ... 6-16
6.4 Propylene from Propane by Oleflex Dehydrogenation Process
 Stream Flow .. 6-18
6.5 Propylene from Propane by Oleflex Dehydrogenation Process
 Major Equipment .. 6-20
6.6 Propylene from Propane by Oleflex Dehydrogenation Process
 Total Capital Investment .. 6-22
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Propylene from Propane by Oleflex Dehydrogenation Process Capital Investment by Section</td>
<td>6-23</td>
</tr>
<tr>
<td>6.8</td>
<td>Propylene from Propane by Oleflex Dehydrogenation Process Production Costs</td>
<td>6-24</td>
</tr>
<tr>
<td>A.1</td>
<td>Catalytic Cracking Catalyst and Process Patent Summary</td>
<td>A-3</td>
</tr>
<tr>
<td>A.2</td>
<td>Propylene from Propane by Dehydrogenation Patent Summary</td>
<td>A-15</td>
</tr>
<tr>
<td>A.3</td>
<td>Propylene by Metathesis Patent Summary</td>
<td>A-20</td>
</tr>
</tbody>
</table>