Process Economics Program

Report 265A
Bio-Based Polymers

By Susan L. Bell
IHS Chemical agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither IHS Chemical nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold IHS Chemical, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by IHS Chemical pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the IHS Chemical programs specializing in marketing research. THE IHS CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced throughout the world. In addition the IHS DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Europe, East Asia, China, India, South & Central America, the Middle East & Africa, Canada, and Mexico.
Bio-based polymers are defined as materials for which at least a portion of the polymer consists of material produced from renewable raw materials. For example, bio-based polymers may be produced from corn or sugarcane. The remaining portion of the polymers may be from fossil fuel-based carbon. Bio-based polymers generally have a lower CO$_2$ footprint and are associated with the concept of sustainability. Because of concerns about the depletion of fossil resources and the global warming associated with the use of petrochemicals, new bio-based polymers continue to be developed.

Several new bio-based polymers have been commercialized. A bio-based polycarbonate, isosorbide polycarbonate, can potentially be used as an alternative to petroleum-based polycarbonate. Corn-based isosorbide is used as a replacement for bisphenol A (BPA) monomer. Bio-based polybutylene succinate (PBS) resin prepared from bio-based succinic acid and bio-based 1,4-butanediol (BDO) can replace biodegradable petrochemical-based PBS. Green polyethylene has been commercialized with bio-based ethylene.

In this report, recent developments in bio-based polymers since our last report published in 2008 are discussed. This report reviews the production of the bio-based monomers required to produce isosorbide polycarbonate, polybutylene succinate, and polyethylene. The process economics for producing the monomers and polymers are evaluated. Comparative process economics for the conventional petroleum-derived polymers are included. This report will be of value to those companies engaged in the production of bio-based polymers and the conventional petroleum-derived-feedstock-based polymers.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>2. Summary</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2. Industrial aspects</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1. Overview</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.2. Bio-based polycarbonate</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.3. Bio-based polybutylene succinate</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.4. Bio-based polyethylene</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.5. Renewable feedstocks</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3. Technical aspects</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1. Monomer production</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1.1. Isosorbide production from glucose feedstock</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1.2. Succinic acid production from glucose feedstock</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1.3. 1,4-Butanediol production from glucose feedstock</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1.4. Ethylene production from corn or sugarcane feedstock</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.2. Polymer production</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.2.1. Isosorbide polycarbonate production</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.2.2. Polybutylene succinate production</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.2.3. Polyethylene production</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4. Economic aspects</td>
<td>2-6</td>
</tr>
<tr>
<td>2.4.1. Bio-based isosorbide</td>
<td>2-6</td>
</tr>
<tr>
<td>2.4.2. Bio-based succinic acid</td>
<td>2-6</td>
</tr>
<tr>
<td>2.4.3. Bio-based 1,4-butanediol</td>
<td>2-7</td>
</tr>
<tr>
<td>2.4.4. Bio-based ethylene</td>
<td>2-8</td>
</tr>
<tr>
<td>2.4.5. Bio-based polycarbonate</td>
<td>2-10</td>
</tr>
<tr>
<td>2.4.6. Bio-based polybutylene succinate</td>
<td>2-11</td>
</tr>
<tr>
<td>2.4.7. Bio-based polyethylene</td>
<td>2-12</td>
</tr>
<tr>
<td>3. Industry status</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2. Overview</td>
<td>3-1</td>
</tr>
<tr>
<td>3.3. Bio-based polymers</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3.1. Polycarbonate</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3.1.1. Conventional polycarbonate</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3.1.2. Bio-based polycarbonate</td>
<td>3-5</td>
</tr>
<tr>
<td>3.3.1.3. Mitsubishi Chemical</td>
<td>3-5</td>
</tr>
<tr>
<td>3.3.1.4. Roquette</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.2. Polybutylene succinate</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.2.1. Petroleum-based polybutylene succinate</td>
<td>3-6</td>
</tr>
<tr>
<td>3.3.2.2. Bio-based polybutylene succinate</td>
<td>3-7</td>
</tr>
</tbody>
</table>
Contents (continued)

Mitsubishi Chemical .. 3-8
Showa Denko .. 3-8
Uhde Inventa-Fischer .. 3-8
Bio-Based Succinic Acid ... 3-8
BioAmber ... 3-9
Myriant Technologies .. 3-9
Reverdia .. 3-9
Succinity GmbH .. 3-10
Bio-based 1,4-butanediol (BDO) .. 3-10
Genomatica ... 3-10
BioAmber ... 3-10
Myriant and Davy Process Technology ... 3-10
Metabolix ... 3-10
Polyethylene .. 3-11
Petroleum-based polyethylene ... 3-11
Bio-based polyethylene ... 3-14
Other bio-based polymers ... 3-15
Polyamide ... 3-15
Castor oil-based polyamide ... 3-15
PA56 ... 3-15
PA66 ... 3-15
Polylactic acid ... 3-15
Starch-based polymers .. 3-16
Novamont .. 3-16
Ingredion .. 3-16
BIOP Biopolymer Technologies AG .. 3-17
Rodenburg Biopolymers ... 3-17
Polyhydroxyalkanoates (PHA) ... 3-17
Bio-based polyols ... 3-17
4. Bio-based polymer production chemistry and technology ... 4-1
Introduction ... 4-1
Isosorbide polycarbonate .. 4-1
Sorbitol production ... 4-1
Isosorbide production .. 4-4
Isosorbide polycarbonate production ... 4-7
Polybutylene succinate (PBS) ... 4-11
Polybutylene succinate production .. 4-11
Bio-based succinic acid ... 4-17
Bio-based 1,4-butanediol (BDO) .. 4-21
1,4-Butanediol by fermentation of sugar (direct route) ... 4-21
Contents (continued)

1,4-Butanediol by hydrogenation of bio-based succinic acid (indirect route) 4-23
Polyethylene ... 4-24
Polyethylene production .. 4-24
Bio-based ethanol production ... 4-25
Corn to ethanol .. 4-25
Sugarcane to ethanol .. 4-27
Ethylene from ethanol ... 4-29
5. Economic evaluation of bio-based monomer production .. 5-1
Introduction ... 5-1
Isosorbide production from glucose feedstock 5-1
 Process description .. 5-1
 Section 100—sorbitol production 5-7
 Section 200—isosorbide production 5-7
 Process discussion ... 5-8
 Materials of construction .. 5-8
 Production of highly purified sorbitol 5-8
 Production of isosorbide .. 5-9
 Cost estimates .. 5-10
 Cost sensitivity ... 5-19
Succinic acid production from glucose feedstock 5-20
 Process description .. 5-20
 Section 100—fermentation .. 5-22
 Section 200—recovery and purification 5-22
 Cost estimates .. 5-23
 Cost sensitivity ... 5-28
1,4-Butanediol production from glucose feedstock 5-28
 Process description .. 5-28
 Section 100—fermentation .. 5-31
 Section 200—recovery and purification 5-31
 Cost estimates—recovery and purification 5-32
 Cost sensitivity ... 5-38
Bio-based ethylene production ... 5-38
Bio-based ethanol .. 5-38
 Sugarcane feedstock .. 5-38
 Description ... 5-38
 Cost estimates .. 5-39
 United States .. 5-39
 Brazil ... 5-46
 Corn feedstock .. 5-48
 Description ... 5-48
Contents (continued)

Cost estimates.. 5-48
Ethylene from bio-based ethanol ... 5-52
Description .. 5-52
Cost estimates .. 5-52
6. Economic evaluation of isosorbide polycarbonate production ... 6-1
 Introduction .. 6-1
 Isosorbide polycarbonate production ... 6-1
 Process description ... 6-1
 Section 100—ethylene carbonate production ... 6-6
 Section 200—dimethyl carbonate production ... 6-7
 Section 300—diphenyl carbonate production ... 6-7
 Section 400—sorbitol production ... 6-8
 Section 500—isosorbide production .. 6-8
 Section 600—polymerization ... 6-9
 Process discussion ... 6-9
 Isosorbide production .. 6-9
 Diphenyl carbonate production .. 6-9
 Materials of construction: polymerization section ... 6-10
 Isosorbide purification and storage .. 6-10
 Monomer mixing ... 6-10
 Melt polymerization process ... 6-10
 Cost estimates .. 6-11
 Isosorbide polycarbonate .. 6-11
 Comparison of the process economics of isosorbide polycarbonate and BPA polycarbonate 6-20
 7. Economic evaluation of polybutylene succinate production .. 7-1
 Introduction .. 7-1
 Process description ... 7-1
 Section 100—polymerization ... 7-8
 Section 200—THF recovery and purification ... 7-9
 Process discussion ... 7-9
 Catalyst ... 7-9
 Polymerization conditions .. 7-9
 THF recovery and purification ... 7-9
 Materials of construction ... 7-9
 Cost estimates .. 7-9
 Bio-based polybutylene succinate ... 7-9
 Comparison of estimated cost of bio-based PBS with other polymers 7-15
 8. Economic evaluation of bio-based polyethylene production .. 8-1
 Introduction .. 8-1
 Process description ... 8-1
Contents (concluded)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostalen® process</td>
<td>8-1</td>
</tr>
<tr>
<td>Spherilene® process</td>
<td>8-2</td>
</tr>
<tr>
<td>Cost estimates</td>
<td>8-2</td>
</tr>
<tr>
<td>Appendix A: Patent summary tables</td>
<td>A-1</td>
</tr>
<tr>
<td>Appendix B: Design and cost bases</td>
<td>B-1</td>
</tr>
<tr>
<td>Appendix C: Cited references</td>
<td>C-1</td>
</tr>
<tr>
<td>Appendix D: Patent references by company</td>
<td>D-1</td>
</tr>
<tr>
<td>Appendix E: Process flow diagrams</td>
<td>E-1</td>
</tr>
</tbody>
</table>
Figures

2.1 Historical corn price—United States ... 2-3
2.2 Historical glucose price—United States .. 2-3
2.3 Effect of CHDM cost on isosorbide polycarbonate production cost 2-11
3.1 Consumption of polycarbonate resins by major region and end use—2012 3-4
3.2 Polyethylene world demand by end use .. 3-12
4.1 Isosorbide and related stereoisomers ... 4-1
4.2 Flowchart of isosorbide production .. 4-1
4.3 Continuous sorbitol dehydration process (DuPont’s patent US6864378) 4-6
4.4 Isosorbide and bisphenol A .. 4-8
4.5 Effect of 1,4-CHDM and TCDMM on Tg of isosorbide PC 4-9
4.6 Polymerization reactor arrangement for isosorbide PC production 4-11
4.7 Polybutylene succinate ... 4-11
4.8 Block diagram of polybutylene succinate production ... 4-12
4.9 PBS production by Hitachi Plant Technologies’ patent 4-14
4.10 PBS production by Uhde Inventa-Fischer’s 2-reactor technology 4-14
4.11 Detailed depiction of the ESPREE® reactor ... 4-15
4.12 Detailed depiction of the DISCAGE® HV reactor .. 4-16
4.13 Flowchart of the production of succinic acid .. 4-17
4.14 Enzymatic pathway for succinic acid production via E. coli 4-18
4.15 Flowchart of BioAmber process .. 4-19
4.16 Central fermentative metabolic pathways leading to the formation of mixed acids in M. succiniciproducens ... 4-20
4.17 Biochemical pathways to 1,4-butanediol by modified E. coli 4-21
4.18 Block diagram of BDO production from sugar ... 4-22
4.19 Succinic acid to BDO ... 4-23
4.20 Davy’s BDO production block diagram .. 4-24
4.21 PEP coverage of bio-based ethanol technology .. 4-25
4.22 Corn dry milling ... 4-26
4.23 Cane sugar production .. 4-28
5.1 Block flow diagram of sorbitol production from D-glucose 5-2
5.2 Block flow diagram of isosorbide production from sorbitol 5-2
5.3 Isosorbide production ... 5-10
5.4 Chromatographic separation to produce high purity sorbitol 5-9
5.5 Continuous sorbitol dehydration process .. 5-10
5.6 Effect of isosorbide production capacity on price .. 5-19
5.7 Effect of glucose cost on isosorbide price .. 5-19
5.8 Comparison of bisphenol A cost with estimated isosorbide cost 5-20
5.9 Bio-based succinic acid production by fermentation of glucose E-7
5.10 Effect of glucose cost on bio-based succinic acid price 5-28
5.11 Bio-based 1,4-butanediol production from glucose by a direct route E-11
Figures (concluded)

5.12 Effect of glucose cost on 1,4-butanediol price ... 5-38
5.13 Effect of world raw sugar prices on ethanol price... 5-40
6.1 Block diagram of integrated isosorbide polycarbonate plant ... 6-1
6.2 Isosorbide polycarbonate production... E-15
6.3 Effect of second hydroxy compound cost on the production cost of isosorbide polycarbonate.... 6-24
7.1 Polybutylene succinate production... E-27
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Table Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Process economics for large-scale isosorbide production</td>
<td>2-6</td>
</tr>
<tr>
<td>2.2</td>
<td>Process economics for large-scale bio-based succinic acid production</td>
<td>2-7</td>
</tr>
<tr>
<td>2.3</td>
<td>Process economics for large-scale bio-based 1,4-butanediol production</td>
<td>2-8</td>
</tr>
<tr>
<td>2.4</td>
<td>Process economics for ethanol production</td>
<td>2-9</td>
</tr>
<tr>
<td>2.5</td>
<td>Process economics for ethylene production</td>
<td>2-10</td>
</tr>
<tr>
<td>2.6</td>
<td>Comparison of production costs for isosorbide polycarbonate and BPA polycarbonate</td>
<td>2-11</td>
</tr>
<tr>
<td>2.7</td>
<td>Process economics for polybutylene succinate production</td>
<td>2-12</td>
</tr>
<tr>
<td>2.8</td>
<td>Estimated bimodal HDPE polyethylene product values based on different ethylene sources</td>
<td>2-13</td>
</tr>
<tr>
<td>3.1</td>
<td>Bio-based polymers</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>World supply/demand for polycarbonate resin by regions—2012</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3</td>
<td>Top 10 polycarbonate resin producers—2012</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4</td>
<td>Polybutylene succinate and polybutylene succinate adipate producers</td>
<td>3-7</td>
</tr>
<tr>
<td>3.5</td>
<td>Conventional polyethylene demand by region</td>
<td>3-11</td>
</tr>
<tr>
<td>3.6</td>
<td>Top HDPE producers</td>
<td>3-13</td>
</tr>
<tr>
<td>3.7</td>
<td>Top LLDPE Producers</td>
<td>3-13</td>
</tr>
<tr>
<td>3.8</td>
<td>Top LDPE producers</td>
<td>3-14</td>
</tr>
<tr>
<td>4.1</td>
<td>Roquette’s NEOSORB® sorbitol solution</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2</td>
<td>Properties of isosorbide</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of Mitsubishi’s isosorbide PC and conventional BPA PC</td>
<td>4-9</td>
</tr>
<tr>
<td>4.4</td>
<td>Properties of PBS, PBSA and several conventional polymers</td>
<td>4-12</td>
</tr>
<tr>
<td>4.5</td>
<td>Film properties of PBS, PBSA, and LDPE</td>
<td>4-12</td>
</tr>
<tr>
<td>5.1</td>
<td>Production of isosorbide Design bases and assumptions</td>
<td>5-3</td>
</tr>
<tr>
<td>5.2</td>
<td>Production of isosorbide Stream flows</td>
<td>5-5</td>
</tr>
<tr>
<td>5.3</td>
<td>Isosorbide production Hydrolysis of polyol by-product fraction</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4</td>
<td>Isosorbide production Major equipment</td>
<td>5-12</td>
</tr>
<tr>
<td>5.5</td>
<td>Isosorbide production Utilities summary</td>
<td>5-14</td>
</tr>
<tr>
<td>5.6</td>
<td>Isosorbide production Total capital investment</td>
<td>5-15</td>
</tr>
<tr>
<td>5.7</td>
<td>Isosorbide production Capital investment by section</td>
<td>5-16</td>
</tr>
<tr>
<td>5.8</td>
<td>Isosorbide production Production costs</td>
<td>5-17</td>
</tr>
<tr>
<td>5.9</td>
<td>Production of bio-based succinic acid Design bases and assumptions</td>
<td>5-21</td>
</tr>
<tr>
<td>5.10</td>
<td>Production of bio-based succinic acid Stream flows</td>
<td>5-21</td>
</tr>
<tr>
<td>5.11</td>
<td>Production of bio-based succinic acid Major equipment</td>
<td>5-24</td>
</tr>
</tbody>
</table>
Tables (continued)

5.12 Production of bio-based succinic acid
Total capital investment .. 5-25

5.13 Production of bio-based succinic acid
Production costs .. 5-26

5.14 Bio-based 1,4-butanediol production from glucose by a direct route
Design bases and assumptions .. 5-29

5.15 Bio-based 1,4-butanediol production from glucose by a direct route
Stream flows ... 5-30

5.16 Bio-based 1,4-butanediol production from glucose by a direct route
Major equipment .. 5-33

5.17 Bio-based 1,4-butanediol production from glucose by a direct route
Total capital investment .. 5-35

5.18 Bio-based 1,4-butanediol production from glucose by a direct route
Production costs .. 5-36

5.19 Ethanol and sugar production from a sugarcane mill
Total capital investment .. 5-41

5.20 Ethanol and sugar production from a sugarcane mill
Production costs .. 5-42

5.21 Ethanol (only) production from a sugarcane mill
Production costs .. 5-44

5.22 US Gulf Coast’s and South America’s downstream capital cost index .. 5-46

5.23 Ethanol production by sugarcane mill (Brazil)
Production costs .. 5-47

5.24 Ethanol production from corn dry mill
Total capital investment .. 5-49

5.25 Ethanol production from corn dry mill
Production costs .. 5-50

5.26 Ethylene from ethanol by adiabatic fixed-bed catalytic dehydration
Total capital investment .. 5-53

5.27 Ethylene from ethanol by adiabatic fixed-bed catalytic dehydration
Production costs .. 5-54

5.28 Estimated ethylene product values with different ethanol sources .. 5-56

6.1 Production of isosorbide polycarbonate
Design bases and assumptions .. 6-3

6.2 Production of isosorbide polycarbonate
Stream flows ... 6-5

6.3 Production of isosorbide polycarbonate
Major equipment—Sections 600 and 700 ... 6-13

6.4 Production of isosorbide polycarbonate
Total capital investment .. 6-15

6.5 Production of isosorbide polycarbonate
Capital investment by section ... 6-16

6.6 Production of isosorbide polycarbonate
Production costs .. 6-18
Tables (concluded)

6.7 Production of BPA polycarbonate
 Total capital investment ... 6-21

6.8 Production of BPA polycarbonate
 Production costs .. 6-22

6.9 Comparison of production costs for isosorbide polycarbonate and BPA polycarbonate 6-24

7.1 Production of bio-based polybutylene succinate
 Design bases and assumptions ... 7-2

7.2 Production of bio-based polybutylene succinate
 Stream flows .. 7-3

7.3 Production of bio-based polybutylene succinate
 Major equipment .. 7-5

7.4 Production of bio-based polybutylene succinate
 Utilities summary ... 7-7

7.5 Production of bio-based polybutylene succinate
 Total capital investment ... 7-11

7.6 Production of bio-based polybutylene succinate
 Capital investment by section ... 7-12

7.7 Production of bio-based polybutylene succinate
 Production costs .. 7-13

7.8 Comparison of estimated PBS price with prices of other biodegradable polymers 7-15

8.1 Bimodal HDPE by LyondellBasell’s Hostalen® process
 Production costs .. 8-3

8.2 Bimodal HDPE by LyondellBasell’s Spherilene® process
 Production costs .. 8-5

8.3 Estimated bimodal HDPE polyethylene product values based on different ethylene sources 8-7