Abstract
Process Economics Program Report 262
PROPYLENE GLYCOL FROM GLYCERIN
(December 2007)

A variety of economic, environmental and technical factors have encouraged industry attention on producing industrial chemicals from bio-feedstocks, rather than from crude oil derivatives. One such example is producing propylene glycol (PG) from glycerine (GLY), rather than the conventional routes starting with propylene monomer.

Propylene glycol has historically been produced in commercial quantities either via the chlorohydrin process or by peroxidation, both using propylene monomer as the starting material. Both routes produce propylene oxide (PO) as an intermediate chemical, which is then hydrated to propylene glycol. The peroxidation routes have evolved from those processes (Arco Chem/Lyondell, Repsol, Shell, BASF) producing a significant amount of by-product (PO/styrene monomer, PO/tertiary butyl alcohol, PO/ methyl tertiary butyl ether), to more recent processes developed by Solvay, Dow and BASF that eliminate the by-product by using hydrogen peroxide as the oxidizing agent.

As of 2007, Degussa has announced the design and construction of a commercial scale PG plant using glycerine as its feedstock. Other companies have announced processes to use glycerine to produce polyols and epichlorohydrin.

The combination of high crude oil prices and governmental subsidies to produce biofuels (bio-ethanol, bio-diesel) have resulted in an enormous increase in bio-diesel production, resulting in a glut of by-product glycerine (which represents 10% of biodiesel mass). As a result, glycerine market prices have fallen from $US 2/kg down to fuel value ($US 200/mt), or less.

The low cost of glycerine combined with the high price of PG offers an opportunity to develop industrial scale processes converting glycerine to propylene glycol. This report presents preliminary process engineering design information and the corresponding production economics for converting GLY to PG using the Davy process and a process developed at the University of Missouri by Galen Suppes. In addition to these two processes this report also provides a detailed design of the glycerin purification section that is needed to allow these processes to take advantage of lower cost crude glycerin which is readily available from may bio-diesel production facilities.
PROPYLENE GLYCOL
FROM GLYCERIN

by ANTHONY PAVONE

December 2007

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1
 SOURCE OF GLYCERIN FROM BIO-DIESEL MANUFACTURE 1-2
 ALTERNATIVE COMMERCIAL ROUTES TO PG VIA PO 1-3
 VALUE PROPOSITION FOR PROPYLENE GLYCOL FROM GLYCERIN 1-6

2 SUMMARY ... 2-1
 UPGRADING FUEL GRADE GLYCERIN ... 2-2
 AVAILABLE LICENSED TECHNOLOGIES ... 2-3
 KEY TECHNOLOGY ATTRIBUTES ... 2-3
 ATTRACTIVENESS OF GLYCERIN TO PROPYLENE GLYCOL 2-3

3 PROCESS SAFETY ... 3-1
 PROCESS SAFETY CONCERNS ... 3-1
 MAJOR SAFETY CONCERN FOR PG FROM GLY 3-1
 PRODUCT SAFETY CHARACTERISTICS OF PROPYLENE GLYCOL AND
 GLYCERIN ... 3-1
 Glycerin ... 3-2
 Hydrogen ... 3-3
 Acetol .. 3-3
 Acrolein .. 3-3
 Propylene Glycol ... 3-4
 Ethylene Glycol ... 3-4
 Methanol ... 3-5
 CATALYSTS .. 3-5
 BRIEF PROCESSING PERKS ... 3-6
 MAJOR PROCESSING RISKS .. 3-6
 MATERIALS OF CONSTRUCTION ... 3-6
CONTENTS (Continued)

4 VALUE PROPOSITION FOR CONVERTING GLYCERIN TO PROPYLENE GLYCOL

- HISTORICAL PRICING ENVIRONMENT
- GLYCERIN PRODUCTION LEVEL FROM BIO-DIESEL
- SUBSIDY ECONOMICS FOR BIO-DIESEL
- LONG TERM VIABILITY OF METHYL ESTER BIO-DIESEL
- BIO-DIESEL FEEDSTOCK OPTIONS
- ALTERNATE CHEMISTRIES FOR CONSUMING GLYCERIN

5 INDUSTRY STATUS

- PROPYLENE GLYCOL
- PG—Physical Properties
- PG—Chemical Properties
- PG—Uses
- PG—Integrated Supply Chain
- PG—Commercial Grades
- PG—Methods of Manufacture
- PG—SUPPLY AND DEMAND
- PG—DEMAND GROWTH
- PG—By-Product Production
- PG—COMPETITORS
- HISTORICAL PRICES FOR PROPYLENE GLYCOL
- GLYCERIN
- Glycerin Physical Properties
- Glycerin Chemical Properties
- COMMERCIAL USES FOR GLYCERIN
- PRODUCTION OF GLYCERIN
CONTENTS (Continued)

GLOBAL GLYCERIN SUPPLY/DEMAND BALANCE .. 5-17
COMMERCIAL GRADES OF GLYCERIN .. 5-19
CRUDE GLYCERIN ... 5-19
Refined or Purified Glycerin .. 5-20
Commercial Uses for Glycerin .. 5-21
Historical Glycerin Pricing .. 5-21
BALANCE BETWEEN CRUDE GLYCERIN AND Refined GLYCERIN 5-25
QUANTITY OF EXCESS GLYCERIN PRODUCTION VIA BIO-DIESEL 5-26
POSSIBLE NEW COMMERCIAL CHEMICALS FROM GLYCERIN 5-28
ANNOUNCED PROJECTS FOR PROPYLENE GLYCOL FROM GLYCERIN 5-29
OTHER COMMERCIAL PRODUCT ANNOUNCEMENTS INVOLVING GLYCERIN
AS FEEDSTOCK .. 5-30
Epichlorohydrin .. 5-30
Propane Diol (PDO) ... 5-30
Glycerine Based Polyols ... 5-30
Other Commercial Product Announcements Involving Propylene Glycol
Production from Bio-Feedstocks ... 5-31

6 RELEVANT CHEMISTRY ... 6-1
GLYCERIN MOLECULAR STRUCTURE ... 6-1
CONVENTIONAL SOURCES OF GLYCERIN .. 6-1
FORMATION OF GLYCERIN BY-PRODUCT FROM BIO-DIESEL PRODUCTION . 6-2
SAPONIFICATION ... 6-2
CHEMISTRY OF PROPYLENE GLYCOL PRODUCTION FROM GLYCERIN 6-3
CONVENTIONAL CATALYSTS FOR GLYCERIN CONVERSION TO PROPYLENE
GLYCOL ... 6-4
HYDROGENOLYSIS CATALYSTS .. 6-4
COMPETING REACTIONS .. 6-5
CONTENTS (Continued)

Glycerin Purity Required for Propylene Glycol Production .. 7-17
Fuel Grade Glycerin Specifications .. 7-18
Glycerin Analytical Standards ... 7-18

8 PRE-TREATMENT OF FUEL GRADE GLYCERIN ... 8-1
 RATIONALE FOR PRE-TREATMENT ... 8-1
 SCOPE OF WORK FOR PRE-TREATMENT SYSTEM .. 8-3
 INPUT-OUTPUT DIAGRAM ... 8-4
 BIO-DIESEL PROCESS PRIMER ... 8-4
 CHARACTERIZATION OF FUEL GRADE GLYCERIN ... 8-5
 FUEL GRADE GLYCERIN COMPOSITION .. 8-6
 COMPOSITION OF PRE-TREATED GLYCERIN ... 8-8
 GLYCERIN PRE-TREATMENT UNIT PROCESSING ... 8-8
 PRE-TREATMENT BLOCK FLOW DIAGRAM ... 8-9
 PROCESS DESIGN BASIS FOR FUEL GRADE GLYCERIN RECEIVING AND BULK
 STORAGE FACILITIES .. 8-11
 PROCESS DESCRIPTION: UNLOADING AND BULK STORAGE OF CRUDE
 GLYCERIN ... 8-11
 FUEL GRADE GLYCERIN NEUTRALIZATION ... 8-12
 FEEDSTOCK HEATING AND FREE OIL SEPARATION .. 8-12
 CENTRIFUGE FILTRATION AND ION EXCHANGE BEDS 8-12
 WIPE FILM VACUUM EVAPORATION .. 8-13
 FINAL GLYCERIN VACUUM DISTILLATION ... 8-14
 ACTIVATED CARBON TREATMENT ... 8-15
 METHANOL PURIFICATION SYSTEM ... 8-15

9 PROPYLENE GLYCOL FROM GLYCERIN VIA DAVY VAPOR PHASE PROCESS
 TECHNOLOGY ... 9-1
CONTENTS (Continued)

LIQUID AND VAPOR PHASE PROCESSES .. 9-1
ASHLAND-CARGILL PG PROJECT ANNOUNCEMENT ... 9-1
DAVY LIQUID PHASE PROCESS TECHNOLOGY .. 9-1
Liquid Phase Process Configuration ... 9-2
Documented Basis for Davy Liquid Phase Design .. 9-2
CLAIMED BENEFITS OF THE DAVY LIQUID PHASE PROCESS 9-2
KEY ELEMENTS OF DAVY VAPOR PHASE GLYCERIN TO PG TECHNOLOGY .. 9-3
Qualitative Evaluation of the Davy Vapor Phase Process 9-4
DAVY VAPOR PHASE PROCESS CATALYST ... 9-4
Reactor Design Conditions ... 9-4
PROCESS DESCRIPTION OF DAVY VAPOR PHASE PROCESS 9-5

10 PROPYLENE GLYCOL FROM GLYCERIN VIA PROFESSOR SUPPES TECHNOLOGY ... 10-1
TECHNOLOGY LICENSING .. 10-1
Essence of Suppes Process ... 10-2
USE OF COPPER-CHROMITE CATALYST ... 10-2
Impact of Water on Reaction ... 10-3
Impact of Reactive Distillation .. 10-3
Documentation Used in the Process Design .. 10-4
PROCESS DESCRIPTION ... 10-4
OPPORTUNITY TO PRODUCE PG FREE OF EO .. 10-5

11 RELEVANT US PATENTS .. 11-1
Hydrogenation of Benzene to Toluene ... 10-10
Hydrogenation of Benzene to Toluene ... 10-22
Hydrogenation of Benzene to Toluene ... 10-33
CONTENTS (Concluded)

APPENDIX A: PATENT SUMMARY TABLES ... A-1
APPENDIX B: CITED REFERENCES .. B-1
APPENDIX C: PROCESS FLOW DIAGRAM ... C-1
ILLUSTRATIONS

1.1 Glycerin Molecular Structure ... 1-1
1.2 Chemistry of Glycerin Conversion to Propylene Glycol 1-2
1.3 3-Step Process: Propylene Glycol from Glycerin 1-2
1.4 Bio-Diesel Chemistry .. 1-3
1.5 PO Hydration to PG ... 1-3
1.6 Propylene Glycol Integrated Product Chain ... 1-4
2.1 Glycerin Pre-Treatment Sequence ... 2-2
4.1 Historical US Naphtha and Propylene Prices .. 4-1
4.2 Historical US Price for Glycerin .. 4-2
4.3 Historical US PO and PG Price ... 4-3
4.4 Historical US Prices for Propylene and PG .. 4-3
4.5 Historic US Prices for Glycerin and PG .. 4-4
4.6 Methyl Ester vs. Hydrogenated Bio-Diesel .. 4-7
5.1 Uses for Propylene Glycol ... 5-3
5.2 Propylene Glycol Integrated Product Chain 5-3
5.3 Propylene Oxide Derivatives ... 5-4
5.4 Hydration of PO to PG .. 5-7
5.5 Western Europe Sourcing for Glycerin .. 5-17
5.6 Historic US Crude Glycerin Prices ... 5-22
5.7 Historic Refined Glycerin Prices .. 5-22
5.8 World Bio-Diesel Production by Region and Consumption of Biodiesel .. 5-27
5.9 World Biodiesel Production Capacity and Supply/Demand 5-28
6.1 Molecular Structure of Glycerin .. 6-1
6.2 Reaction Paths for Triglycerides ... 6-2
6.3 Methanol Reaction with Triglycerides .. 6-2
6.4 Glycerin Conversion to PG ... 6-3
6.5 Glycerin Conversion Pathways ... 6-6
ILLUSTRATIONS (Concluded)

6.6 Hydration of PO to PG ... 6-6
7.1 Historical PEP Construction Cost Index for the U.S. Gulf Coast 7-4
7.2 Basic Bio-Diesel Production Process ... 7-8
7.3 Block Flow Diagram of By-Product Glycerin Treatment within Bio-Diesel Production Plant .. 7-10
8.1 Schematic of Lurgi Bio-Diesel Plant ... 8-2
8.2 Segmentation of Glycerin to PG Process .. 8-3
8.3 Process Input/Output Diagram ... 8-4
8.4 Block Flow Diagram for Glycerin Pre-Treatment 8-10
8.5 Glycerin Pre-Treatment Process Flow Diagram C-3
9.1 Propylene Glycol from Glycerine via Davy Vapor Phase Technology Process Flow Diagram .. C-9
10.1 Reaction Steps in Suppes Process ... 10-2
10.2 PG from Glycerine via Suppres Liquid Phase Technology C-11
TABLES

2.1 Commercial Uses for Glycerin ... 2-1
3.1 Major Product Safety Risks ... 3-2
4.1 Global Production of Glycerin by Source (KTY) ... 4-5
4.2 Green Diesel Yield ... 4-7
4.3 Comparison of Diesel Fuels ... 4-8
4.4 Potential Farm Yield of Bio-Diesel Feedstock Sources 4-9
5.1 Boiling Point Elevation with PG:H₂O Solutions ... 5-1
5.2 Freezing Point Depression with PG:H₂O Solutions .. 5-1
5.3 Heat Capacity of PG:H₂O Solutions ... 5-2
5.4 Commercial Specifications for Propylene Glycol ... 5-4
5.5 Global Propylene Glycols Capacity and Consumption – 2006 5-6
5.6 World Supply/Demand for Propylene Glycols – 2006 5-7
5.7 Major World Producers of Propylene Glycols ... 5-8
5.8 World Producers of Propylene Glycols ... 5-9
5.9 U.S. List Price and Unit Value for Monopropylene Glycol............................. 5-12
5.10 Western European Prices for Propylene Glycols .. 5-13
5.11 Historical Japan Prices for PG ... 5-14
5.12 Physical Properties of Purified Glycerin ... 5-15
5.13 Commercial Uses for Glycerin ... 5-16
5.14 Glycerin Global Supply/Demand Balance ... 5-18
5.15 Commercial Grades of Glycerin .. 5-19
5.16 Forms of Crude Glycerin ... 5-20
5.17 Forms of Refined Glycerin ... 5-20
5.18 Historic US Glycerin Prices ... 5-23
5.19 Historic European Glycerin Prices ... 5-24
5.20 Historic Japan Glycerin Prices .. 5-25
5.21 SRIC Projection of World Bio-Diesel Production by Region 5-26
<table>
<thead>
<tr>
<th>TABLES (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Construction Cost Site Location Factors ... 7-1</td>
</tr>
<tr>
<td>7.2 Historical PEP Construction Cost Index for the U.S. Gulf Coast 7-5</td>
</tr>
<tr>
<td>7.3 Distribution of Components from Raw Bio-Diesel Decanting Drum 7-11</td>
</tr>
<tr>
<td>7.4 Combined Glycerin Rich Streams from Bio-Diesel Manufacturing Plant 7-11</td>
</tr>
<tr>
<td>7.5 Feed Stream to Methanol Recovery within Bio-Diesel Manufacturing Plant 7-12</td>
</tr>
<tr>
<td>7.6 Representative Composition of Fuel Grade Glycerin Stream from Medium Scale Bio-Diesel Plant ... 7-13</td>
</tr>
<tr>
<td>7.7 Propylene Glycol Product Specifications ... 7-16</td>
</tr>
<tr>
<td>7.8 Methanol By-Product Specification ... 7-17</td>
</tr>
<tr>
<td>7.9 Pre-Treated Glycerin Specification .. 7-18</td>
</tr>
<tr>
<td>8.1 Fuel Grade Glycerin Composition from Bio-Diesel Plant that Recovers Methanol ... 8-7</td>
</tr>
<tr>
<td>8.2 Fuel Grade Glycerin Composition from Bio-Diesel Plant that Does Not Recover Methanol .. 8-7</td>
</tr>
<tr>
<td>8.3 Composition of Pre-Treated Glycerin ... 8-8</td>
</tr>
<tr>
<td>8.4 Process Conditions for Wiped Film Evaporators ... 8-14</td>
</tr>
<tr>
<td>8.5 Utility Consumption of Lurgi Glycerin Distillation Unit 8-14</td>
</tr>
<tr>
<td>8.6 Pre-Treatment Section Material Balance .. 8-16</td>
</tr>
<tr>
<td>8.7 Technical Grade Glycerin from Fuel Grade Glycerin Equipment List 8-17</td>
</tr>
<tr>
<td>8.8 Technical Grade Glycerin from Fuel Grade Glycerin Total Capital Investment ... 8-19</td>
</tr>
<tr>
<td>8.9 Technical Grade Glycerin from Fuel Grade Glycerin Production Economics ... 8-20</td>
</tr>
<tr>
<td>9.1 Propylene Glycol from Glycerin via Davy Vapor Phase Technology Material Balance ... 9-7</td>
</tr>
<tr>
<td>9.2 Propylene Glycol from Glycerin via Davy Vapor Phase Technology Equipment List ... 9-8</td>
</tr>
<tr>
<td>9.3 Propylene Glycol from Glycerin via Davy Vapor Phase Technology Capital Cost Estimate ... 9-10</td>
</tr>
</tbody>
</table>
9.4 Propylene Glycol from Glycerin via Davy Vapor Phase Technology
Production Economics

TABLES (Concluded)

10.1 Catalyst Results for the Suppes Process

10.2 Propylene Glycol from Glycerin via Suppes Liquid Phase Technology
Material Balance

10.3 Propylene Glycol from Glycerin via Suppes Liquid Phase Technology
Equipment List

10.4 Propylene Glycol from Glycerin via Suppes Liquid Phase Technology
Capital Cost Estimate

10.5 Propylene Glycol from Glycerin via Suppes Liquid Phase Technology
Production Cost Estimate