Abstract

IONIC LIQUIDS

(September 2004)

Ionic liquids (ILs) have generated a great deal of interest in the chemical industry. They represent a new class of solvents. The term ionic liquid (IL) is used loosely to describe an organic salt with a melting point below 100°C. Ionic liquids have been referred to as “room temperature molten salt”, “low-temperature molten salt” and “liquid organic salts.” Unlike conventional salts, they are typically fluid at room temperature.

Ionic liquids have relatively low viscosity and are very good solvents for a wide range of organic, inorganic, and polymeric materials. Some research studies have indicated that certain ionic liquids are capable of dissolving almost anything. They are good solvents for many catalyst systems because they are polar, non-coordinating solvents. Unlike water and organic solvents, they possess no appreciable vapor pressure. Volatile organic compounds (VOCs), therefore, will not be a problem. Because of the lack of measurable vapor pressure, easy recyclability, and nonflammability, ionic liquid solvents are viewed by many as “green” solvents. They can be used to redesign processes in order to reduce or eliminate loss of solvents particularly VOCs. The growth in development in ionic liquids is not only being driven by their potential as green solvents but also by potential improvement in process economics, reaction activity, selectivity, and yield. Applications using ionic liquids as solvents and catalysts are being developed in the chemical industry.

This report will review the technological development in ionic liquids particularly as it relates to the chemical industry. The production costs for different types of ionic liquid based on high production volumes are discussed. The process economics for two case studies involving chemical syntheses using ionic liquids are analyzed. The processes evaluated were an alkylation process using a chloroaluminate ionic liquid as a catalyst to produce ethylbenzene and a hydroformylation process using an ionic liquid as a solvent to produce isononal. The isononal is subsequently hydrogenated to produce isononyl alcohol. The resulting process economics are compared to those of the conventional processes. This report will be of interest to manufacturers and consumers of industrial solvents and individuals interested in alternative “green” processes. Because of potential improvement in chemical synthesis, this report will be of general interest to the chemical industry.
IONIC LIQUIDS

by SUSAN L. BELL

September 2004

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

Covalent Associates, Inc. (Woburn, Massachusetts) ... 3-5
Cytec Industries Inc. (West Paterson, N.J) .. 3-5
Merck KGaA (Darmstadt, Germany) .. 3-5
Ozark Fluorine Specialties (Folcroft, PA) ... 3-6
Scionix (United Kingdom) ... 3-6
SACHEM (Austin, Texas) ... 3-6
Solvent Innovation GmbH (Köln, Germany) ... 3-6
IONIC LIQUID APPLICATION DEVELOPMENT FOR CHEMICAL SYNTHESIS AND
SEPARATION ... 3-6
Akzo Nobel ... 3-7
BP Chemical... 3-7
BASF Aktiengesellschaft .. 3-7
Center for Green Manufacturing at the University of Alabama 3-7
L’Institut Francais du Petrole (IFP) ... 3-7
Queen's University Ionic Liquid Laboratories (QUILL) ... 3-7

IONIC LIQUID: PROPERTIES AND PRODUCTION ... 4-1

INTRODUCTION .. 4-1
IONIC LIQUIDS: WHAT ARE THEY? ... 4-1
PROPERTIES OF IONIC LIQUIDS .. 4-4
Melting Point ... 4-4
Upper Temperature Limits ... 4-6
Viscosity, Density, and Surface Tension ... 4-7
Lewis Acid-Based Ionic Liquids .. 4-7
Solubility in Ionic Liquids .. 4-8
Water Miscibility .. 4-9
Solubility of Organic Compounds ... 4-9
Solubility of Metal Salts ... 4-10
CONTENTS (Continued)

- Solubility of Gases .. 4-11
- Electrochemical Properties .. 4-12
- General Properties of Ionic Liquids 4-13
- Ionic Liquid Quality .. 4-15
- Toxicity and Disposal ... 4-15

CHALLENGES FOR USING IONIC LIQUIDS FOR INDUSTRIAL APPLICATIONS

IONIC LIQUID PREPARATION

- Conventional Preparation ... 4-17
- Recent Improvement ... 4-19

HIGH VOLUME PRODUCTION OF IONIC LIQUIDS

- Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 - Section 100 - Quaternization Reaction 4-21
 - Section 200 - Metathesis Reaction and Purification 4-22
- Materials of Construction ... 4-22
- Waste Streams .. 4-22
- Capital Investment ... 4-26
- Production Costs .. 4-32

- Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 - Section 100 - Quaternization Reaction 4-35
 - Section 200 - Metathesis Reaction and Purification 4-35
- Materials of Construction ... 4-35
- Waste Streams .. 4-36
- Capital Investment ... 4-40
- Production Costs .. 4-46

Production of Chloroaluminate Based Ionic Liquids

- [bmim]CI/AlCl₃ Ionic Liquid
 - Section 100 - Quaternization Reaction 4-49
 - Section 200 - Lewis Acid Addition 4-49
- Materials of Construction ... 4-50
CONTENTS (Continued)

Capital Investment ... 4-53
Production Costs ... 4-59
[(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid ... 4-62
Section 100 - Protonation Reaction 4-62
Section 200 - Lewis Acid Addition 4-62
Materials of Construction .. 4-62
Capital Investment ... 4-65
Production Costs ... 4-70
Ionic Liquid Cost Comparison ... 4-73

5 CHEMICAL SYNTHESES WITH IONIC LIQUIDS 5-1
INTRODUCTION ... 5-1
HOMOGENEOUS CATALYSIS ... 5-2
CHLOROALUMINATE(III) IONIC LIQUIDS FOR CHEMICAL SYNTHESES 5-3
“NEUTRAL” IONIC LIQUIDS FOR CHEMICAL SYNTHESES 5-3
APPLICATIONS OF IONIC LIQUIDS FOR CHEMICAL SYNTHESES 5-4
Dimerization and Oligomerization Reactions 5-4
Hydrogenation Reactions .. 5-7
Friedel-Crafts Reactions ... 5-9
Diels-Alder Reactions ... 5-10
Coupling Reactions .. 5-10
Catalytic Oxidation ... 5-11
Biochemical Reactions .. 5-12
Polymerization ... 5-12
CASE STUDY: ETHYLBENZENE PRODUCTION WITH CHLOROALUMINATE IONIC LIQUID 5-13
Ethylbenzene Production: Background 5-13
Production of Ethylbenzene with an Ionic Liquid Catalyst 5-15
Process Description .. 5-15
Section 100 – Alkylation Section ... 5-15
CONTENTS (Continued)

Section 200 – Ethylbenzene Recovery Section .. 5-16
Process Discussion .. 5-23
Cost Estimates ... 5-25
Comparison of Ethylbenzene Production with an Ionic Liquid and Conventional
Ethylbenzene Processes.. 5-31

CASE STUDY: ISONONYL ALCOHOL PRODUCTION WITH AN IONIC LIQUID.... 5-36
Isononyl Alcohol Production: Background.. 5-36
Production of Isononyl Alcohol with an Ionic Liquid Solvent 5-38
Process Description .. 5-38
Section 100 – Hydroformylation... 5-39
Section 200—Catalyst Recovery.. 5-39
Section 300— Hydrogenation and Product Refining ... 5-39
Process Discussion .. 5-50
Cost Estimates ... 5-52
Comparison of Isononyl Alcohol Production with an Ionic Liquid and the Conventional
Isononyl Alcohol Process... 5-57

6 SEPARATION AND OTHER APPLICATION USING IONIC LIQUIDS.............. 6-1
INTRODUCTION .. 6-1
EXTRACTION OF ORGANICS FROM AQUEOUS SOLUTIONS 6-1
EXTRACTION OF METAL WITH IONIC LIQUIDS.. 6-3
ACID REMOVAL FROM ORGANIC SOLVENTS.. 6-4
SULFUR REMOVAL FROM HYDROCARBON STREAMS.. 6-4
GAS SEPARATIONS AND SUPPORTED LIQUID MEMBRANE 6-4
IONIC LIQUIDS FOR NUCLEAR FUEL REPROCESSING AND NUCLEAR WASTE
TREATMENT ... 6-5
OTHER APPLICATIONS .. 6-6

APPENDIX A: PATENT SUMMARY TABLES... A-1
APPENDIX B: DESIGN AND COST BASES... B-1
CONTENTS (Concluded)

APPENDIX C: CITED REFERENCES... C-1
APPENDIX D: PATENT REFERENCES BY COMPANY..................................... D-1
APPENDIX E: PROCESS FLOW DIAGRAMS... E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>ILLUSTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Publications on Ionic Liquids</td>
</tr>
<tr>
<td>2.1 Effect of the Production Capacity on the Product Values of Different Ionic Liquids</td>
</tr>
<tr>
<td>2.2 Ethylbenzene Production with an Ionic Liquid
Effect of Ionic Liquid Cost and Life on the Product Value</td>
</tr>
<tr>
<td>2.3 Isononyl Alcohol Production with an Ionic Liquid
Effect of Ionic Liquid Cost and Life on the Product Value</td>
</tr>
<tr>
<td>3.1 Market Sectors for Conventional Solvents</td>
</tr>
<tr>
<td>3.2 Commercialization of New Ionic Liquids</td>
</tr>
<tr>
<td>3.3 Commercialization of an Application Using Ionic Liquids</td>
</tr>
<tr>
<td>4.1 Common Organic Cations Used for Ionic Liquids</td>
</tr>
<tr>
<td>4.2 Melting Point Phase Diagram for [Rmim][BF₄] Ionic Liquids as a Function of Alkyl Chain Length</td>
</tr>
<tr>
<td>4.3 Phase Diagram for Lewis Acid-Based Ionic Liquid [emim][Cl][AlCl₃]</td>
</tr>
<tr>
<td>4.4 Qualitative Phase Diagram of Ionic Liquid/CO₂ Mixture</td>
</tr>
<tr>
<td>4.5 Solubility of Gases in [bmim][PF₆] at 25°C</td>
</tr>
<tr>
<td>4.6 Effect of Anion Type on IL Properties for Some Common Cation-Anion Pairs</td>
</tr>
<tr>
<td>4.7 Relative Cost of Cations and Anions Used for Ionic Liquids</td>
</tr>
<tr>
<td>4.8 General Methods to Synthesize [alkyl-mim] Ionic Liquids</td>
</tr>
<tr>
<td>4.9 Halide-Free Ionic Liquid Syntheses</td>
</tr>
<tr>
<td>4.10 Production of Hydrophobic [bmim][PF₆] Ionic Liquid</td>
</tr>
<tr>
<td>4.11 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid</td>
</tr>
<tr>
<td>4.12 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid</td>
</tr>
<tr>
<td>4.13 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid</td>
</tr>
<tr>
<td>4.14 Effect of Production Capacity on the Ionic Liquid Product Value</td>
</tr>
<tr>
<td>5.1 Schematic of Biphasic Reaction in an Ionic Liquid</td>
</tr>
<tr>
<td>5.2 Dimersol™ Process</td>
</tr>
<tr>
<td>5.3 Difasol Process</td>
</tr>
<tr>
<td>5.4 Continuous Hydroformylation Process</td>
</tr>
<tr>
<td>5.5 Ethylbenzene Production with an Ionic Liquid</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Concluded)

5.6 Loop Reactor Used in Alkylation Experiments .. 5-23
5.7 Ethylbenzene Production with an Ionic Liquid
 Effect of Ionic Liquid Cost on the Total Fixed Capital Investment 5-34
5.8 Ethylbenzene Production with an Ionic Liquid
 Effect of Ionic Liquid Cost on the Product Value ... 5-35
5.9 Exxon Process for Isononyl Alcohol (INA) .. 5-36
5.10 Exxon Process for Isononyl Alcohol (INA)
 Catalyst Recovery .. 5-37
5.11 Catalyst Recovery for Ionic Liquid Hydroformylation Process 5-38
5.12 Isononyl Alcohol Production with an Ionic Liquid ... E-15
5.13 INA Production with an Ionic Liquid
 Effect of Ionic Liquid Cost on the Total Fixed Capital Investment 5-59
5.14 INA Production with an Ionic Liquid
 Effect of Ionic Liquid Cost on the Product Value ... 5-60
6.1 Distribution Ratios of Organic Solutes in [bmim][PF₆]/Water System 6-2
6.2 Distribution Ratios of Ionizable Organic Solutes in [bmim][PF₆]/Water System
 as a Function of Aqueous Phase pH ... 6-3
6.3 CO₂ Capture with an Ionic Liquid ... 6-5
TABLES

2.1 List Price of Some Ionic Liquids ... 2-3
2.2 Capital Investment for High Volume Production of Different Ionic Liquids (@ 100 MTA) ... 2-4
2.3 Raw Material Cost and Product Value for Different Ionic Liquids 2-5
2.4 Comparison of Ethylbenzene Processes ... 2-8
2.5 Comparison of Costs for Different Ethylbenzene Processes 2-9
2.6 Comparison of Isononyl Alcohol Production Processes 2-11
2.7 Comparison of Costs for Isononyl Alcohol Production Processes 2-12
3.1 Different Solvent Classes ... 3-2
4.1 Patent Summary
 Ionic Liquid Synthesis... A-3
4.2 Ionic Liquid Patents .. 4-4
4.3 van der Waals Volumes of Several Common Anions 4-5
4.4 Effect of the Size of Ions on the Melting Points of Salts............................ 4-5
4.5 Viscosity and Density Data for Several Ionic Liquids at 298K 4-7
4.6 Water Miscibility of Different Ionic Liquids ... 4-9
4.7 Solubility of Organic Compounds in Different Ionic Liquids 4-10
4.8 General Property Relationship for Ionic Liquids 4-14
4.9 Properties of [bmim][PF₆] and [bmim][BF₄] at 25°C................................. 4-15
4.10 List Prices of Some Ionic Liquids ... 4-17
4.11 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Design Bases and Assumptions... 4-23
4.12 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Stream Flows.. 4-24
4.13 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Major Equipment .. 4-27
4.14 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Utilities Summary.. 4-29
TABLES (Continued)

4.15 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Total Capital Investment... 4-30

4.16 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Capital Investment by Section... 4-31

4.17 Production of Hydrophobic [bmim][PF₆] Ionic Liquid
 Production Costs ... 4-33

4.18 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Design Bases and Assumptions... 4-37

4.19 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Stream Flows... 4-38

4.20 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Major Equipment .. 4-41

4.21 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Utilities Summary... 4-43

4.22 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Total Capital Investment... 4-44

4.23 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Capital Investment by Section... 4-45

4.24 Production of Water Miscible [bmim][octylsulfate] Ionic Liquid
 Production Costs ... 4-47

4.25 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Design Bases and Assumptions... 4-51

4.26 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Stream Flows... 4-52

4.27 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Major Equipment .. 4-54

4.28 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Utilities Summary... 4-56

4.29 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Total Capital Investment... 4-57

4.30 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Capital Investment by Section... 4-58

4.31 Production of Water-Sensitive [bmim]Cl/AlCl₃ Ionic Liquid
 Production Costs ... 4-60
4.32 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Design Bases and Assumptions .. 4-63
4.33 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Stream Flows ... 4-64
4.34 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Major Equipment ... 4-66
4.35 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Utilities Summary ... 4-67
4.36 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Total Capital Investment .. 4-68
4.37 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Capital Investment by Section .. 4-69
4.38 Production of Water-Sensitive [(CH₃)₃NH]Cl/AlCl₃ Ionic Liquid Production Costs ... 4-71
4.39 Raw Material Costs and Product Values for Different Ionic Liquids ... 4-73

5.1 Patent Summary
Chemical Synthesis in Ionic Liquids .. A-12
5.2 Hydrogenation Reactions with Ionic Liquids ... 5-7
5.3 Ethylbenzene Production with an Ionic Liquid Design Bases and Assumptions .. 5-17
5.4 Ethylbenzene Production with an Ionic Liquid Stream Flows ... 5-18
5.5 Ethylbenzene Production with an Ionic Liquid Summary of Waste Streams .. 5-19
5.6 Ethylbenzene Production with an Ionic Liquid Major Equipment ... 5-20
5.7 Ethylbenzene Production with an Ionic Liquid Utilities Summary .. 5-22
5.8 Comparison of Ethylbenzene Production with [emim]Cl/AlCl₃ Ionic Liquid and with a Conventional AlCl₃ Catalyst ... 5-24
5.9 Effect of Pre-contacting [(C₂H₅)₃NH]Cl/AlCl₃ Ionic Liquid with Benzene on Ethylbenzene Production ... 5-24
5.10 Ethylbenzene Production with an Ionic Liquid Total Capital Investment .. 5-27
TABLES (Concluded)

5.11 Ethylbenzene Production with an Ionic Liquid
Capital Investment by Section .. 5-28
5.12 Ethylbenzene Production with an Ionic Liquid
Production Costs ... 5-29
5.13 Comparison of Ethylbenzene Processes .. 5-31
5.14 Comparison of Costs for Ethylbenzene Processes ... 5-33
5.15 Isononyl Alcohol Production with an Ionic Liquid
Design Bases and Assumptions ... 5-41
5.16 Isononyl Alcohol Production with an Ionic Liquid
Stream Flows ... 5-43
5.17 Isononyl Alcohol Production with an Ionic Liquid
Summary of Waste Streams .. 5-45
5.18 Isononyl Alcohol Production by the Conventional Process from PEP Report 21D
Summary of Waste Streams .. 5-45
5.19 Isononyl Alcohol Production with an Ionic Liquid
Major Equipment ... 5-46
5.20 Isononyl Alcohol Production with an Ionic Liquid
Utilities Summary ... 5-49
5.21 Comparison of Results in the Hydroformylation of 1-Octene Using Different Ionic
Liquid Systems ... 5-50
5.22 Isononyl Alcohol Production with an Ionic Liquid
Total Capital Investment ... 5-53
5.23 Isononyl Alcohol Production with an Ionic Liquid
Capital Investment by Section .. 5-54
5.24 Isononyl Alcohol Production with an Ionic Liquid
Production Costs ... 5-55
5.25 Comparison of Isononyl Alcohol Production Processes 5-57
5.26 Comparison of Costs for Isononyl Alcohol Production Processes 5-58
6.1 Patent Summary
Separation and Other Applications Using Ionic Liquids .. A-23
7.1 Other Applications for Ionic Liquids Separation and Other Application Using
Ionic Liquids .. A-25
GLOSSARY

<table>
<thead>
<tr>
<th>Symbol or Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>alkyl-mim</td>
<td>1-alkyl-3-methylimidazolium</td>
</tr>
<tr>
<td>BETI</td>
<td>Bis(perfluoroethylsulfonyl)imide (N(SO$_2$CF$_2$CF$_3$)$_2$)$_2$(\cdot)</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2'-Bis(diphenylphosphino)-1,1′-binaphthyl (C${44}$H${32}$P$_2$)</td>
</tr>
<tr>
<td>bmim</td>
<td>1-butyl-3-methylimidazolium</td>
</tr>
<tr>
<td>bmp</td>
<td>1-n-butyl-3-methylpyridinium</td>
</tr>
<tr>
<td>cod</td>
<td>1,4-cyclooctadiene</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>dmpi</td>
<td>1,2-dimethyl-3-propylimidazolium</td>
</tr>
<tr>
<td>emim</td>
<td>1-ethyl-3-methylimidazolium</td>
</tr>
<tr>
<td>hmim</td>
<td>1-hexyl-3-methylimidazolium</td>
</tr>
<tr>
<td>IL</td>
<td>Ionic liquid</td>
</tr>
<tr>
<td>INA</td>
<td>Isononyl alcohol</td>
</tr>
<tr>
<td>isoq</td>
<td>Isoquinoline</td>
</tr>
<tr>
<td>LHSV</td>
<td>Liquefied product space velocity, i.e. volume liquefied product per hour/volume of catalyst</td>
</tr>
<tr>
<td>Methide</td>
<td>(CF$_3$SO$_2$)$_3$C$^{-}$</td>
</tr>
<tr>
<td>mmim</td>
<td>1-methyl-3-methylimidazolium</td>
</tr>
<tr>
<td>omim</td>
<td>1-octyl-3-methylimidazolium</td>
</tr>
<tr>
<td>nbd</td>
<td>Norbornadiene</td>
</tr>
<tr>
<td>[NTf$_2$]</td>
<td>(CF$_3$SO$_2$)$_2$N$^{-}$</td>
</tr>
<tr>
<td>[Otf]</td>
<td>CF$_3$SO$_3$ $^{-}$</td>
</tr>
<tr>
<td>pmp</td>
<td>1-n-propyl-3-methylpyridinium</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>Rh(CO)$_2$(acac)</td>
<td>Rhodium dicarbonyl acetylacetonate</td>
</tr>
<tr>
<td>scCO$_2$</td>
<td>Supercritical CO$_2$</td>
</tr>
<tr>
<td>TSILs</td>
<td>Task-specific ionic liquids</td>
</tr>
</tbody>
</table>