Abstract

Process Economics Program Report 255
METHYL METHACRYLATE
(November 2004)

Due to global economic downturn, the methyl methacrylate (MMA), a high-value chemical intermediate for acrylic polymers production, saw just a modest growth rate in capacity, averaging 2.7%/yr from 1997 to 2002. Consumption of MMA in that period increased at an average annual rate of 3%. The demand started to rise in late 2002, initializing the upward part of the MMA business cycle World MMA capacity is expected to grow at a rate of 3.9%/yr from 2002 to 2007, whereas the world market is projected to grow at an average annual rate of 4.5%.

While the conventional acetone cyanohydrin (ACH) route continues to stay as the most dominant route to MMA with a share in MMA output likely to further increase as under-construction and planned plants come onstream, other routes, based upon C_2 and C_4 feedstocks, received an increasing focus in the past fifteen years mainly due to the problems associated with the conventional ACH route (undesirable byproducts formation and handling of highly corrosive materials). Another stimulus for new MMA routes was production of MMA from raw materials, which could impart a supply freedom by providing independent sources for raw materials. Typical example is C_2 based raw materials, e.g. ethylene. Ethylene is easily available and can economically produce MMA in an environment-friendly way (BASF is producing MMA from ethylene since 1988). In C_3 or C_4 routes, the raw materials such as acetone, hydrogen cyanide, isobutylene, or t-butanol are the product or byproduct of a chain process, and hence, their availability is dependent on other materials/products. C_4 based routes are mainly commercialized in Japan where production of hydrogen cyanide (HCN) did not keep pace with the increasing demand of MMA. Low demand of isobutylene has also been a factor for the evolution of C_4 based MMA routes.

Apart from providing cost-effective new outlets to ethylene, propylene, isobutylene or t-butanol feedstocks, the recent C_2, C_3 and C_4 based MMA routes are less hostile to environment, and in several cases more economical than the conventional dominant ACH route. This Report examines and analyzes the techno-economics of some of those routes as listed below:

- Lucite Technology (ethylene based)
- Eastman Technology (ethylene based)
- Mitsubishi Gas Chemical Technology (acetone, HCN, and methyl formate based)
- Mitsubishi Gas Chemical Technology (acetone, HCN, and methanol based)
- Asahi MA Oxidative-Esterification Technology (isobutylene based)

In addition to detailed study of the above five processes, this Report also presents updated process economics for a t-butanol based commercial plant of Japan Methacryl Monomer.
CONTENTS (Continued)

Oxidation of MA to MAA ... 4-3
Esterification of MAA with Methanol to MMA 4-4
MMA from Ethylene via Propionic Acid .. 4-4
 Hydrocarbonylation of Ethylene to Propionic Acid 4-4
 Condensation of Propionic Acid and Formaldehyde to MAA 4-5
 Esterification of MAA with Methanol to MMA 4-5
 Oxidative-Esterification of Propionic Acid to MMA 4-5
MMA from Ethylene via Methyl Propionate .. 4-5
 Carbomethoxylation of Ethylene to Methyl Propionate 4-5
 Condensation of Methyl Propionate and Formaldehyde to MMA 4-6
C₃ BASED ROUTES TO METHYL METHACRYLATE 4-8
MMA from Acetone and HCN via ACH by the Conventional Process 4-8
 Preparation of Acetone Cyanohydrin ... 4-9
 Hydrolysis of Acetone Cyanohydrin .. 4-9
 Esterification of Methacrylamide Sulfate 4-9
MMA from Acetone and HCN via ACH by the Mitsubishi Gas Chemical Process..... 4-10
 Preparation of Acetone Cyanohydrin ... 4-10
 Hydrolysis of Acetone Cyanohydrin .. 4-10
 Tranesterification of AHIBA to MAHIB 4-11
 Dehydration of MAHIB .. 4-11
 Dehydration of Formamide to HCN .. 4-11
 MGC Process Variant — Using Methanol for Esterification........... 4-11
MMA from Propylene via Isobutyric Acid by the Atochem/Röhm Process...... 4-12
 Hydrocarbonylation of Propylene to Isobutyric Acid 4-12
 Oxidative-Dehydrogenation of Isobutyric Acid to MAA 4-13
 The Esterification of MAA with Methanol to MMA 4-13
MMA from Propyne ... 4-13
 Sources of Propyne .. 4-14
 Propyne Carbomethoxylation ... 4-15
CONTENTS (Continued)

C₂ BASED ROUTES TO METHYL METHACRYLATE .. 4-15
MMA from IB/TBA via Methacrolein and Methacrylic Acid by a Three-Step Process 4-16
 Oxidation of Isobutylene/t-Butyl Alcohol to Methacrolein......................... 4-16
 Oxidation of MA to MAA .. 4-17
 Recovery of MAA.. 4-18
 Esterification of MAA with Methanol to MMA ... 4-19
 Recovery of MMA.. 4-19
MMA from Isobutylene/t-Butyl Alcohol via Methacrolein by a Two-Step Process 4-20
MMA from Isobutylene via Methacrylonitrile... 4-21
 MMA from Isobutylene via Methacrylonitrile and Methacrylic Acid — Variation.. 4-21
 MMA from Isobutylene via Methacrylonitrile and Methacrylamide — Variation... 4-21
 MMA from Isobutylene via Methacrylonitrile — Variation.............................. 4-22
PURIFICATION OF METHYL METHACRYLATE .. 4-22

5 C₂ BASED ROUTES TO METHYL METHACRYLATE 5-1
LUCITE ETHYLENE-TO-METHYL METHACRYLATE ROUTE.......................... 5-1
PROCESS DESCRIPTION .. 5-2
Carbomethoxylation... 5-2
Condensation ... 5-3
PROCESS DISCUSSION ... 5-17
Carbomethoxylation Reaction .. 5-17
Formaldehyde Dewatering ... 5-17
Condensation Reaction .. 5-18
Product Separation ... 5-18
Materials of Construction... 5-19
Waste Streams .. 5-19
COST ESTIMATES ... 5-19
Fixed-Capital Costs .. 5-19
CONTENTS (Continued)

Production Costs .. 5-20
EASTMAN ETHYLENE-TO-METHYL METHACRYLATE ROUTE 5-27
Route #1 ... 5-27
Route #2 .. 5-27
Route #3 .. 5-28
Route #4 .. 5-28
PROCESS DESCRIPTION ... 5-29
Carbonylation .. 5-29
Condensation .. 5-33
Esterification .. 5-34
PROCESS DISCUSSION ... 5-44
Carbonylation .. 5-44
Condensation .. 5-44
Carrier Gas ... 5-44
MATERIAL OF CONSTRUCTION ... 5-45
WASTE TREATMENT .. 5-45
COST ESTIMATES .. 5-45
Fixed-Capital Costs ... 5-45
Production Costs .. 5-46

6 C₃ BASED ROUTES TO METHYL METHACRYLATE .. 6-1
PROCESS DESCRIPTION (METHYL FORMATE BASED PROCESS) 6-2
Acetone Cyanohydrin .. 6-2
AHIBA ... 6-6
MAHIB ... 6-6
MMA ... 6-6
HCN Regeneration ... 6-7
CONTENTS (Continued)

PROCESS DISCUSSION... 6-18
Route .. 6-18
Product Separation .. 6-18
Heating Medium .. 6-19
Catalysts .. 6-19
Materials of Construction .. 6-19
Waste Streams .. 6-19
COST ESTIMATES .. 6-20
Fixed-Capital Costs .. 6-20
Production Costs .. 6-20
PROCESS DESCRIPTION (METHANOL BASED PROCESS)............................... 6-30
Acetone Cyanohydrin ... 6-30
AHIBA ... 6-30
MAHIB .. 6-30
MMA .. 6-35
HCN Regeneration .. 6-35
PROCESS DISCUSSION... 6-46
Product Separation .. 6-46
Heating Medium .. 6-46
Catalysts .. 6-47
Materials of Construction .. 6-47
Waste Streams .. 6-47
COST ESTIMATES .. 6-48
Fixed-Capital Costs .. 6-48
Production Costs .. 6-48
Comparative Costs of Methyl Formate-based and Methanol-based Processes...... 6-50

7 C₄ BASED ROUTES TO METHYL METHACRYLATE .. 7-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Methyl Methacrylate Consumption Patterns</td>
<td>3-10</td>
</tr>
<tr>
<td>3.2 Share of Different Methyl Methacrylate Production Technologies</td>
<td>3-11</td>
</tr>
<tr>
<td>4.1 Routes to Methyl Methacrylate</td>
<td>4-2</td>
</tr>
<tr>
<td>5.1 C₂ Based Routes to MMA—Lucite Alpha Technology</td>
<td>D-3</td>
</tr>
<tr>
<td>5.2 C₂ Based Routes to MMA—Lucite Alpha Technology Effect of Plant Capacity</td>
<td>5-23</td>
</tr>
<tr>
<td>5.3 C₂ Based Routes to MMA—Lucite Alpha Technology Effect of Operating Level and Plant Capacity on MMA Product Value</td>
<td>5-26</td>
</tr>
<tr>
<td>5.4 C₂ Based Routes to MMA—Eastman Technology</td>
<td>D-7</td>
</tr>
<tr>
<td>5.5 C₂ Based Routes to MMA—Eastman Technology Effect of Operating Level and Plant Capacity on MMA Product Value</td>
<td>5-51</td>
</tr>
<tr>
<td>6.1 C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology</td>
<td>D-13</td>
</tr>
<tr>
<td>6.1A C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology</td>
<td>D-19</td>
</tr>
<tr>
<td>6.2 C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Acetone Price on Production Costs & Product Value of MMA</td>
<td>6-27</td>
</tr>
<tr>
<td>6.3 C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Methyl Formate Price on Production Costs & Product Value of MMA</td>
<td>6-28</td>
</tr>
<tr>
<td>6.4 C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Plant Operating Level on MMA Product Value</td>
<td>6-29</td>
</tr>
<tr>
<td>6.2A C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Acetone Price on Production Costs & Product Value of MMA</td>
<td>6-55</td>
</tr>
<tr>
<td>6.3A C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Methanol Price on Production Costs & Product Value of MMA</td>
<td>6-56</td>
</tr>
<tr>
<td>6.4A C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Effect of Plant Operating Level on MMA Product Value</td>
<td>6-57</td>
</tr>
<tr>
<td>7.1 C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology</td>
<td>D-25</td>
</tr>
<tr>
<td>7.2 C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Effect of LB Price on Production Costs & Product Value of MMA</td>
<td>7-27</td>
</tr>
<tr>
<td>7.3 C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Effect of Methanol Price on Production Costs & Product Value of MMA</td>
<td>7-28</td>
</tr>
<tr>
<td>7.4 C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Effect of Operating Level and Plant Capacity on MMA Product Value</td>
<td>7-29</td>
</tr>
</tbody>
</table>
TABLES

2.1 C₂ Based Routes to Methyl Methacrylate
Total Capital Investment.. 2-10

2.2 C₂ Based Routes to Methyl Methacrylate
Production Costs ... 2-11

2.3 C₃ Based Routes to Methyl Methacrylate
Total Capital Investment.. 2-13

2.4 C₃ Based Routes to Methyl Methacrylate
Production Costs ... 2-14

2.5 C₄ Based Routes to Methyl Methacrylate
Total Capital Investment.. 2-16

2.6 C₄ Based Routes to Methyl Methacrylate
Production Costs ... 2-17

2.7 Overall Comparison of MMA Technologies
Total Fixed Costs... 2-18

2.8 Overall Comparison of MMA Technologies
Production Costs of MMA.. 2-19

3.1 Historical and Projected World Methyl Methacrylate Capacity, Production, and Consumption, by Region ... 3-6

3.2 Year-End Capacities of Methyl Methacrylate Plants Worldwide 3-7

4.1 MMA from Ethylene via Propionic Acid ... A-3

4.2 MMA from Ethylene via Methyl Propionic.. A-4

4.3 MMA from Ethylene via Acetone Cyanohydrin.. A-6

4.4 MMA from Propyne.. A-9

4.5 MMA from Isobutylene via Methacrolein ... A-10

4.6 Purification of MMA Products .. A-14

5.1 C₂ Based Routes to MMA—Lucite Alpha Technology
Design Bases .. 5-5

5.2 C₂ Based Routes to MMA—Lucite Alpha Technology
Stream Flows... 5-7

5.3 C₂ Based Routes to MMA—Lucite Alpha Technology
Equipment List ... 5-13

5.4 C₂ Based Routes to MMA—Lucite Alpha Technology
Equipment List ... 5-16
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>C2 Based Routes To MMA—Lucite Alpha Technology Total Capital Investment</td>
</tr>
<tr>
<td>5.6</td>
<td>C2 Based Routes to MMA—Lucite Alpha Technology Capital Investment By Section</td>
</tr>
<tr>
<td>5.7</td>
<td>C2 Based Routes to MMA—Lucite Alpha Technology Production Costs</td>
</tr>
<tr>
<td>5.8</td>
<td>C2 Based Routes to MMA—Eastman Technology Design Bases</td>
</tr>
<tr>
<td>5.9</td>
<td>C2 Based Routes to MMA—Eastman Technology Stream Flows</td>
</tr>
<tr>
<td>5.10</td>
<td>C2 Based Routes to MMA—Eastman Technology Stream Flows</td>
</tr>
<tr>
<td>5.11</td>
<td>C2 Based Routes To MMA—Eastman Technology Utilities Summary</td>
</tr>
<tr>
<td>5.12</td>
<td>C2 Based Routes to MMA—Eastman Technology Total Capital Investment</td>
</tr>
<tr>
<td>5.13</td>
<td>C2 Based Routes to MMA—Eastman Technology Capital Investment by Section</td>
</tr>
<tr>
<td>5.14</td>
<td>C2 Based Routes to MMA—Eastman Technology Production Costs</td>
</tr>
<tr>
<td>6.1</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Design Bases</td>
</tr>
<tr>
<td>6.2</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Stream Flows</td>
</tr>
<tr>
<td>6.3</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Major Equipment</td>
</tr>
<tr>
<td>6.4</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Utilities Summary</td>
</tr>
<tr>
<td>6.5</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Total Capital Investment</td>
</tr>
<tr>
<td>6.6</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Capital Investment by Section</td>
</tr>
<tr>
<td>6.7</td>
<td>C3 Based Routes to MMA—Mitsubishi Gas Chemical Technology Production Costs</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Design Bases</td>
<td>6-31</td>
</tr>
<tr>
<td>6.2A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Stream Flows</td>
<td>6-36</td>
</tr>
<tr>
<td>6.3A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Major Equipment</td>
<td>6-42</td>
</tr>
<tr>
<td>6.4A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Utilities Summary</td>
<td>6-45</td>
</tr>
<tr>
<td>6.5A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Total Capital Investment</td>
<td>6-50</td>
</tr>
<tr>
<td>6.6A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Capital Investment by Section</td>
<td>6-51</td>
</tr>
<tr>
<td>6.7A</td>
<td>C₃ Based Routes to MMA—Mitsubishi Gas Chemical Technology Production Costs</td>
<td>6-53</td>
</tr>
<tr>
<td>7.1</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Design Bases</td>
<td>7-4</td>
</tr>
<tr>
<td>7.2</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Stream Flows</td>
<td>7-8</td>
</tr>
<tr>
<td>7.3</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Major Equipment</td>
<td>7-14</td>
</tr>
<tr>
<td>7.4</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Utilities Summary</td>
<td>7-17</td>
</tr>
<tr>
<td>7.5</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Total Capital Investment</td>
<td>7-23</td>
</tr>
<tr>
<td>7.6</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Capital Investment by Section</td>
<td>7-24</td>
</tr>
<tr>
<td>7.7</td>
<td>C₄ Based Routes to MMA—Asahi Oxidative-Esterification Technology Production Costs</td>
<td>7-25</td>
</tr>
</tbody>
</table>