This PEP report is designed to help clients better understand the technology changes that are being incorporated in modern, state of the art naphtha steam crackers, and also assist operators of existing steam crackers in providing incremental upgrades to improve performance and profitability.

For grass roots naphtha steam crackers, we provide an engineering process design and corresponding production economics for a 1.2 MM tpy naphtha steam cracking unit that incorporates state of the art technology. These new developments include: mercury and arsenic pre-treatment of feedstock, DMSO addition to naphtha very low in sulfur content, furnace operation for both maximum ethylene and maximum propylene business objectives, front end depropanizer fractionation trains, dual depropanizer tower optimization, front end hydrogenation of di-olefins with dilute hydrogen, mixed refrigerant cryogenics, and low pressure (20 bar) process compression. For this configuration, we have also provided material balances for light and full range naphtha operated for both maximum ethylene and propylene yields.

We have also prepared a comparison of the licensed process offerings currently made by KBR, Lummus, S&W, Technip and Linde.

We also explore typical debottlenecking strategies to incrementally increase production capacity. These include cracked gas and refrigeration compressor upgrades, major driver modifications, quench oil and water wash tower modifications, and fractionation train tray and packing modifications.

To extend major turnaround frequency to 5 year intervals, we identify the major equipment that needs to be upgraded and/or made redundant. These include heavy service reboilers, compressor inter-stage coolers, TLE operation, upgraded furnace tube metallurgy, and quench cooler upgrades.

Given the emphasis currently applied to on-line, real time economic optimizers, we review the vendor offerings, and describe the sources of economic credits that justify this type of SCADA investment.

Lastly, we explore unit operating strategies to improve conversion and selectivity, reduce the volume of coke production and frequency of steam air decoking, and keeping the unit running clean. We examine on-line washing of the cracked gas compressor, naphtha additives to reduce furnace tube coking and extend tube life, current hydrogenation catalyst availability, green oil management, intermediate draw-off trays on the primary fractionator for kerosene and diesel recovery, and improved process computer control offerings made by Honeywell and Foxboro.
ADVANCES IN NAPHTHA
STEAM CRACKING

by ANTHONY PAVONE
MARCOS CESAR
ABE GELBEIN
ERIC ZUNIGA

December 2005

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1
 SAFETY CONSIDERATIONS .. 1-1
 BACKGROUND .. 1-2
 PHYSICAL PROPERTIES .. 1-2
 OLEFINS BUSINESS STATUS AS OF 2005
 TECHNOLOGY TRENDS AND PROCESS DESIGN FEATURES 1-4
 BUSINESS TRENDS .. 1-5
 DEBOTTLENECKING .. 1-5
 MANUFACTURING EXCELLENCE ... 1-6

2 SUMMARY ... 2-1
 PROCESS DESIGN ... 2-1
 MATERIAL BALANCE ... 2-5
 CAPITAL COSTS ... 2-5
 VARIABLE MANUFACTURING COST ... 2-8
 TOTAL MANUFACTURING COSTS .. 2-9
 ECONOMIC RESULTS .. 2-9

3 INDUSTRY STATUS .. 3-1
 REPRESENTATIVE NAPHTHA CRACKER YIELD PROFILE 3-1
 NAPHTHA SOURCES ... 3-2
 LIGHT NAPHTHA VERSUS HEAVY NAPHTHA ... 3-5
 DESIRED NAPHTHA QUALITIES FOR STEAM CRACKING 3-6
 NAPHTHA FEEDSTOCK QUALITY & SPECIFICATIONS 3-7
 PRODUCT SPECIFICATIONS ... 3-9
 USES FOR ETHYLENE ... 3-12
CONTENTS (Continued)

USES FOR PROPYLENE .. 3-12
USES FOR BUTYLENE .. 3-13
USES FOR C₅ OLEFINS .. 3-14
USES FOR PYROLYSIS GASOLINE .. 3-14
CURRENT OLEFINS SUPPLY/DEMAND BALANCE ... 3-14
END USED DEMAND GROWTH PROSPECTS ... 3-15
END USE DEMAND GROWTH PROSPECTS ... 3-15
OLEFINS DEMAND GROWTH PROSPECTS ... 3-17
OLEFINS SUPPLY AND DEMAND FORECAST ... 3-19
ETHYLENE AND PROPYLENE PRODUCERS ... 3-20
COMPETITIVE CAPACITY FOR NEW STEAM CRACKERS 3-21
ALTERNATIVE TECHNOLOGIES FOR PRODUCING LIGHT OLEFINS 3-21
CONSIDERATIONS FOR 5-YEAR OPERATING INTERVALS .. 3-22

4 PROCESS CHEMISTRY .. 4-1
INTRODUCTION .. 4-1
BASIC NAPHTHA CRACKING CHEMISTRY ... 4-3
MODELING NAPHTHA CRACKING REACTIONS ... 4-4
Reaction Initiation ... 4-5
Reaction Propagation .. 4-6
Termination Reactions .. 4-7
AROMATICS FORMATION ... 4-8
OVER-CRACKING .. 4-9
PSEUDO COMPONENT ANALYSIS ... 4-9
NAPHTHA STEAM CRACKING TEMPERATURES ... 4-10
STEAM CRACKING PRESSURES .. 4-13
PROCESS DESIGN BASIS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>5-1</td>
<td>5-2</td>
<td>5-3</td>
<td>5-3</td>
<td>5-4</td>
<td>5-4</td>
<td>5-5</td>
<td>5-5</td>
<td>5-15</td>
<td>5-15</td>
<td>5-15</td>
<td>5-16</td>
<td>5-18</td>
<td>5-18</td>
<td>5-19</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

PROJECT DESIGN CAPACITY AND CAPACITY UTILIZATION 5-21
Design Capacity ... 5-21
Capacity Utilization Factor .. 5-22
Turndown Ratio .. 5-22
Turnaround Frequency and Duration .. 5-22
Steam Air Decoking .. 5-22

PROJECT PROCESS FLOW BASIS .. 5-22
Naphtha Feed Quality Enhancement ... 5-23
Mercury and Arsenic Removal .. 5-23
Anti-Coking Additives ... 5-23
Continuous Anti-Coking Chemical Additives ... 5-25
Hard Coated Cracking Tubes .. 5-26
Cracking Furnace Design Basis ... 5-27
Furnace Tube Metallurgy .. 5-28

PRINCIPLE NAPHTHA CRACKER DESIGN FEATURES 5-29
Front End De-Propanizer Distillation Sequence ... 5-29
3 Stage (Rather than 5 Stage) Cracked Gas Compression 5-29
Ternary Refrigeration ... 5-29
Gas Turbine Drivers for the Major Process Compressors 5-30
Reactive Distillation for Di-Olefin Conversion ... 5-30
Vapor Recompression for the Propylene Splitter ... 5-30
Raising 120 Bar Superheated Steam Pressure in the Transfer Line Exchangers ... 5-30
Ubiquitous On-Line Gas Chromatograph Analyzers ... 5-31
Computer Control Systems Incorporating Open Field Bus Architectures and On-Line Economic Optimizer .. 5-31
Integrated Cogeneration .. 5-33
Redundant Critical Instrument Sensors Will be Employed Using 3-Way Voting Logic .. 5-33
CONTENTS (Continued)

Provide Rotating Machine Condition Monitoring Instrumentation 5-33
Extensive Use of Particulate Filter and Emulsion Coalescers 5-34
On-Line Cracked Gas Compressor Washing ... 5-34
ENGINEERING AND DESIGN STANDARDS .. 5-35
SITE SPECIFIC DESIGN CONDITIONS ... 5-35
Site Location ... 5-35
Facility Site Basis .. 5-36
 Sitewide Considerations ... 5-36
COST BASES ... 5-37
Capital Investment .. 5-37
Construction Capital Cost Index ... 5-38
Project Construction Timing ... 5-38
Production Cost .. 5-39
Feedstock, Product and Energy Pricing ... 5-39
Effect of Operating Level on Production Costs ... 5-39
Available Utilities ... 5-40
Fresh Naphtha Feedstock Specifications .. 5-40
Naphtha Contaminant Levels .. 5-42
 Sulfur Addition .. 5-42
Gas Oil Specification ... 5-43
ETHYLENE AND PROPYLENE PRODUCT SPECIFICATIONS 5-43
By-Product Specifications .. 5-47
Steam to Hydrocarbon Ratio .. 5-48
Contaminant Removal ... 5-49
ONCE THROUGH FURNACE YIELDS ... 5-49
Recycle Feed Yields in Furnace ... 5-51
NAPHTHA FEED AND LIQUID PRODUCT STORAGE ... 5-51
CONTENTS (Continued)

CRACKED GAS COMPRESSION ... 6-17
COMPRESSOR DRIVERS .. 6-17
COGENERATION .. 6-17
ACID GAS TREATMENT AND CRACKED GAS DRYING 6-18
WARM DISTILLATION TRAIN ... 6-19
DUAL DE-PROPANIZER DESIGN .. 6-19
Design of Di-Olefin Removal System .. 6-20
De-Butanizer Design .. 6-21
CYROGENIC DISTILLATION TRAIN .. 6-21
De-Methanizer Design ... 6-21
Ethylene Splitter Design ... 6-22
Propylene Splitter Design ... 6-23
TERNARY REFRIGERATION SYSTEM .. 6-23
TERNARY REFRIGERATION COMPRESSOR ... 6-23
HEAVY REFRIGERANT CYCLE .. 6-24
Medium/Light Refrigerant Cycle .. 6-24
COLD BOX DESIGN .. 6-25
HYDROGEN PURIFICATION SYSTEM ... 6-25
MATERIAL BALANCES ... 6-25
EQUIPMENT LIST ... 6-27
CAPITAL COST ESTIMATE .. 6-27

7 PRODUCTION ECONOMICS ... 7-1
PREVAILING ECONOMIC ENVIRONMENT ... 7-1
RAW MATERIAL PRODUCTION COSTS .. 7-2
UTILITY CONSUMPTION .. 7-3
CONTENTS (Concluded)

APPENDIX C: PRODUCER CAPACITY TABLES... C-1

APPENDIX D: STREAM FLOWS.. D-1

APPENDIX E: PROCESS FLOW DIAGRAM.. E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Furnace Feedstock Piping Configuration</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2</td>
<td>Project Design Input Output Diagram</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3</td>
<td>Project Design Block Flow Diagram</td>
<td>2-4</td>
</tr>
<tr>
<td>3.1</td>
<td>Oil Refinery Block Flow Diagram Showing Naphtha Sources</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>Distribution of Ethylene Uses</td>
<td>3-12</td>
</tr>
<tr>
<td>3.3</td>
<td>Distribution of Propylene Uses</td>
<td>3-13</td>
</tr>
<tr>
<td>3.4</td>
<td>Global Distribution of Butylene Uses</td>
<td>3-14</td>
</tr>
<tr>
<td>3.5</td>
<td>Distribution of Ethylene Derivative Consumption by Region</td>
<td>4-2</td>
</tr>
<tr>
<td>3.6</td>
<td>Typical Radiant Coil Temperature Profile</td>
<td>4-10</td>
</tr>
<tr>
<td>3.7</td>
<td>Naphtha Conversion Along Radiant Coil Path</td>
<td>4-11</td>
</tr>
<tr>
<td>3.8</td>
<td>Olefin Yield as a Function of Naphtha Cracking Severity</td>
<td>4-12</td>
</tr>
<tr>
<td>3.9</td>
<td>Combined Yield of Ethylene + Propylene as a Function of Naphtha Cracking Severity</td>
<td>4-13</td>
</tr>
<tr>
<td>3.10</td>
<td>Cracking Yields for Propane Feed as a Function of Residence Time</td>
<td>4-14</td>
</tr>
<tr>
<td>3.11</td>
<td>Combined Molar Yield of Ethylene + Propylene Per 100 Mols Propane Consumed</td>
<td>4-15</td>
</tr>
<tr>
<td>3.12</td>
<td>Representative Di-Olefin Yield from Naphtha Cracking at Moderate and High Severity</td>
<td>4-16</td>
</tr>
<tr>
<td>3.13</td>
<td>Historic US Posted Prices for Light Naphtha and Olefins</td>
<td>4-18</td>
</tr>
<tr>
<td>3.14</td>
<td>Coke Deposition on Radiant Coil Surfaces Over Time</td>
<td>4-22</td>
</tr>
<tr>
<td>5.1</td>
<td>Naphtha Cracker Suggested Layout</td>
<td>5-10</td>
</tr>
<tr>
<td>5.2</td>
<td>Flare Discharge Root Cause</td>
<td>5-20</td>
</tr>
<tr>
<td>5.3</td>
<td>Coke Composition on Radial Cracking Tubes</td>
<td>5-24</td>
</tr>
<tr>
<td>6.1</td>
<td>Project Design Input Output Diagram</td>
<td>6-3</td>
</tr>
<tr>
<td>6.2</td>
<td>Project Design Block Flow Diagram</td>
<td>6-4</td>
</tr>
<tr>
<td>6.3</td>
<td>Furnace Feedstock Piping Configuration</td>
<td>6-10</td>
</tr>
<tr>
<td>6.4</td>
<td>Cracked Gas Quench System Schematic</td>
<td>6-15</td>
</tr>
<tr>
<td>6.5</td>
<td>Naphtha Steam Cracker</td>
<td>E-3</td>
</tr>
<tr>
<td>8.1</td>
<td>KBR Coil Configurations</td>
<td>8-2</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Concluded)

8.2 KBR Furnace Design .. 8-3
8.3 KBR’s Score Process with Front-End Depropanization ... 8-4
8.4 ABB Lummus Furnace Design .. 8-6
8.5 ABB Lummus – Cracking Heater/Gas Turbine Integration 8-7
8.6 ABB Lummus Global Ethylene Process .. 8-8
8.7 CDYDRO Tower ... 8-9
8.8 Stone & Webster Twin-Cell Furnace Design .. 8-11
8.9 Stone & Webster Ethylene Process ... 8-12
8.10 Stone & Webster – Advanced Recovery System (ARS) ... 8-13
8.11 Linde’s Radiant Coil Designs .. 8-14
8.12 Linde’s Twin – Cell Firebox Design .. 8-15
8.13 Linde AG Ethylene Process ... 8-16
TABLES

1.1 Relevant Physical Properties of Ethylene ... 1-3
3.1 Representative Steam Cracking Yields... 3-2
3.2 Crude Oil Distillation Fractions ... 3-5
3.3 Boiling Points of Major Naphtha Components .. 3-6
3.4 ASTM Specification for Wide Range Naphtha Feedstock 3-7
3.5 Specification for Light Virgin Naphtha ... 3-8
3.6 Ethylene Grade Specifications ... 3-9
3.7 Project Specifications for Ethylene Purity... 3-10
3.8 Project Specifications for Polymer Grade Propylene ... 3-11
3.9 Regional Production and Consumption for Ethylene in 2004 3-16
3.10 Regional Production and Consumption for Propylene in 2004 3-15
3.11 Forecast for Ethylene Use Market Share .. 3-16
3.12 Forecast for Propylene Use Market Share ... 3-17
3.13 Ethylene Demand Growth Forecast .. 3-18
3.14 Change in Expected Ethylene Feedstock Utilization 3-18
3.15 Change in Expected Propylene Feedstock Utilization 3-19
3.16 Olefins Supply/Demand Forecast ... 3-19
3.17 Regional Forecast of Ethylene Supply/Demand ... 3-20
3.18 Regional Forecast of Propylene Supply/Demand ... 3-20
4.1 Representative Naphtha Steam Cracking Yield ... 4-3
4.2 Molecular Structure of Light Olefins and Naphtha Feedstock Components 4-3
4.3 Relationship Between KSF and Cracked Product Distribution 4-16
4.4 Yield Pattern for Steam Cracking Recycled Normal Butane 4-19
5.1 Information Inputs Necessary to Conduct a HAZOP Review 5-6
5.2 Naphtha Cracker Key HAZOP Concerns .. 5-7
5.3 Documented Safety Incidents at Steam Crackers .. 5-11
5.4 Preliminary HAZOP Concerns & Mitigations ... 5-14
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Pipeline Natural Gas Specifications</td>
<td>5-16</td>
</tr>
<tr>
<td>5.6</td>
<td>Liquids Steam Cracker Emissions Summary</td>
<td>5-19</td>
</tr>
<tr>
<td>5.7</td>
<td>Construction Cost Site Location Factors</td>
<td>5-36</td>
</tr>
<tr>
<td>5.8</td>
<td>Distillation Range for Light Virgin Naphtha</td>
<td>5-41</td>
</tr>
<tr>
<td>5.9</td>
<td>ASTM Specification for Wide Range Naphtha Feedstock</td>
<td>5-41</td>
</tr>
<tr>
<td>5.10</td>
<td>Specification for Light Virgin Naphtha</td>
<td>5-42</td>
</tr>
<tr>
<td>5.11</td>
<td>Feedstock Specification for Atmospheric Gas Oil</td>
<td>5-43</td>
</tr>
<tr>
<td>5.12</td>
<td>Breakdown of Ethylene Consumption by Region and Product 2004</td>
<td>5-44</td>
</tr>
<tr>
<td>5.13</td>
<td>Representative Ethylene Product Specifications</td>
<td>5-45</td>
</tr>
<tr>
<td>5.14</td>
<td>Representative Propylene Product Specifications</td>
<td>5-46</td>
</tr>
<tr>
<td>5.15</td>
<td>Once Through Fresh Naphtha Feedstock Yields From Pyrolysis Furnaces</td>
<td>5-50</td>
</tr>
<tr>
<td>6.1</td>
<td>Process Flow Diagram Drawing Nomenclature</td>
<td>6-5</td>
</tr>
<tr>
<td>6.2</td>
<td>Capital Costs</td>
<td>6-28</td>
</tr>
<tr>
<td>6.3</td>
<td>Major Equipment</td>
<td>6-29</td>
</tr>
<tr>
<td>6.4</td>
<td>WRN Feed Max Ethylene Production Stream Flows</td>
<td>D-1</td>
</tr>
<tr>
<td>6.5</td>
<td>WRN Feed Max Propylene Production Stream Flows</td>
<td>D-10</td>
</tr>
<tr>
<td>6.6</td>
<td>LVN Feed Max Ethylene Production Stream Flows</td>
<td>D-19</td>
</tr>
<tr>
<td>6.5</td>
<td>LVN Feed Max Propylene Production Stream Flows</td>
<td>D-28</td>
</tr>
<tr>
<td>7.1</td>
<td>Variable Production Costs for Ethylene from Light Virgin Naphtha</td>
<td>7-5</td>
</tr>
<tr>
<td>7.2</td>
<td>Ethylene from Light Virgin Naphtha Via Steam Cracking</td>
<td>7-7</td>
</tr>
<tr>
<td>8.1</td>
<td>Overall Material Balance – SC-1 Versus Two-Pass Coil, Naphtha Cracking</td>
<td>8-2</td>
</tr>
<tr>
<td>8.2</td>
<td>Ethylene Licensors Comparison</td>
<td>8-18</td>
</tr>
</tbody>
</table>