Abstract
This report on gas-to-liquid (GTL) technologies is a follow-up to last year’s GTL technologies report (PEP Report 247C), which was a targeted techno-economic evaluation of small-scale GTL plants. The 2015 report evaluates GTL technologies commercialized on larger scales. The purpose of this follow-up report is to evaluate the economics of large-scale GTL plants from the perspective of their capital investment and operating costs as well as their future prospects of profitability in an environment of their continuously rising cost of construction, and growing interest in the smaller-scale plants because of their lower capital costs, reduced engineering and construction complexity, ease of modularization, mobility, and so forth. The report analyzes the current difficulties with large-scale plants, which are an issue despite their economics being better than the smaller-scale plants. A brief comparative analysis of the large GTL plants is also presented relative to the economics of crude oil–derived fuel product. The report also describes the plus points of large-scale GTL plants—for example, that large-scale GTL plants have demonstrated their technological viability and capability, and established their reliability by running over long periods of time, whereas the small plants have yet to develop to the commercial levels required to demonstrate their performance capability.

The report presents a techno-economic evaluation of GTL plants that produce primary GTL products—diesel, naphtha, and liquefied petroleum gas (LPG)—at a rated capacity of 50,000 barrels/day (BPD). Plant economics are also presented for two other capacities: 25,000 BPD and 100,000 BPD. Only two licensors offer commercial technologies on that scale—Sasol Limited and Shell Global. Therefore, our techno-economic assessment of the large-scale GTL plants is based on the simulated models of these two companies’ processes. The report, in addition to technology descriptions and economic assessment, presents a comprehensive and highly detailed technical review of the factors governing syngas production, Fischer-Tropsch synthesis, and hydroprocessing processes (see Chapter 4).

Production economics presented in the report are based on the cost data for the US Gulf Coast region only. However, we have included with the report an Excel-based data module—iPEP Navigator, which is accessible on the PEP website as an attachment of the electronic report—to allow our clients to convert the economics of the above two GTL processes to corresponding economics of the same processes in five other regions (Canada, China, Germany, Japan, and the Middle East). We also included China, Germany, and Japan (who are not endowed with enough gas resources to sustain the operation of large-scale GTL plants) in order to give our readers an idea of, or a feel for, the relative change or impact on the economics of GTL plants if there aren’t enough gas resources available locally in such countries.

The iPEP Navigator can also be used as a template to calculate GTL production economics in other gas-rich areas, for example, Africa, Australia, or Russia. The data module offers details such as consumption of utilities and raw materials based on the unit weight/volume of GTL products. Clients can input their own unit prices for utilities and raw materials to work out the GTL process economics for those areas.
Contents

1 Introduction 1-1

2 Summary 2-1
General perspective of the gas-to-liquid conversion 2-1
Changing investment climate for the large-scale GTL plants 2-2
Historical review of the key GTL players 2-3
 Sasol’s GTL process 2-3
 Sasol’s GTL process overview 2-4
 Shell’s GTL process 2-9
 Shell’s GTL process overview 2-9
Process economics 2-13
 Process economics discussion 2-13
Conclusions 2-14
Economics calculation modules for non-US regions 2-15

3 Industry status 3-1

4 Technical review 4-1
Syngas production 4-4
 Feedstocks 4-5
 Natural gas 4-5
 Coal 4-5
 Alternate feedstocks 4-7
 Gasification & reforming technologies 4-8
 Steam methane reforming 4-9
 Partial oxidation (non-catalytic) 4-23
 Catalytic partial oxidation 4-26
 Autothermal reforming 4-31
 Gas-heated reforming 4-39
 Water-gas shift reaction 4-45
HTS catalyst supports 4-47
 Effect of steam on water-gas shift reaction equilibrium 4-48
Fischer-Tropsch synthesis 4-53
 Factors affecting Fischer-Tropsch reactor product 4-53
 Temperature 4-53
 Pressure 4-55
 Space velocity 4-56
 Syngas source/syngas composition 4-59
 Catalysts 4-60
Iron catalysts 4-61
 Catalyst separation 4-73
 Promoters 4-76
 Supports 4-77
F-T reactors 4-78
 Multitubular fixed-bed reactors 4-78
 Circulating fluidized-bed reactors 4-82
 Fixed fluidized-bed reactor 4-84
Slurry bubble column reactor 4-87
Tubular loop reactor 4-92
Hydrocracking/hydroisomerization 4-93
 Catalyst metals 4-94
 Catalyst carriers 4-95
 Catalyst binders 4-95
 Hydrocracking conditions 4-95
Refining 4-97
 Fischer-Tropsch refining technology selection 4-101
 Diesel fuel refinery configuration 4-101
 Jet fuel refinery configurations 4-107

5 Large-scale GTL plant—Sasol process simulation 5-1
Scope of process economics 5-2
Process preview 5-2
Process description 5-3
 Syngas production—Section 100 5-3
 Fischer-Tropsch synthesis—Section 200 5-9
 Fischer-Tropsch products upgrading & refining—Section 300 5-11
Process discussion 5-13
 Feedstock 5-13
 Internal & external recycle of unreacted syngas 5-14
 Isodewaxing of diesel 5-14
 Overall utilities consumption 5-14
 Miscellaneous plant sections 5-15
Cost estimates 5-28
 Fixed-capital costs 5-28
 Production costs 5-29

6 Large-scale GTL plant—Shell process simulation 6-1
Scope of process economics 6-1
Process preview 6-1
Process description 6-2
 Syngas production—Section 100 6-2
 Shell gasification process 6-3
 Steam methane reformer process 6-4
 Fischer-Tropsch synthesis—Section 200 6-8
 Fischer-Tropsch products upgrading & refining—Section 300 6-10
 Offsites and miscellaneous package units 6-13
Process discussion 6-14
 Feedstock 6-14
 Prerforming/reforming 6-14
 Internal recycle of unreacted syngas 6-14
 Reactor size selection 6-14
 F-T catalyst choice 6-15
 Waste heat recovery 6-15
 Steam generation 6-15
 Offgases from GTL plant 6-16
 Materials of construction 6-16
Cost estimates 6-37
 Fixed-capital costs 6-37

Tables

Table 2.1	Overall comparison of the GTL processes economics	2-16
Table 2.2	Overall comparison of the GTL process economics	2-16
Table 2.3	Overall comparison of the GTL processes economics: Total fixed-capital investment for 5,000 BPD GTL plant	2-17
Table 2.4	Overall comparison of the GTL process economics: Production costs of GTL products (diesel, naphtha & lpg)	2-17
Table 4.1	Physical properties of KATALCO 41-61 brand hydrogenation catalyst	4-10
Table 4.2	Physical properties of KATALCO 61-1T brand hydrogenation catalyst	4-11
Table 4.3	Physical properties of TK-250 brand hydrogenation catalyst	4-11
Table 4.4	Physical properties of KATALCO 57-4 brand SMR catalysts (JM)	4-17
Table 4.5	Physical properties of RK-200 series SMR catalysts (HT)	4-18
Table 4.6	Physical properties of R-67-7H SMR catalysts (HT)	4-18
Table 4.7	Typical operating conditions for a gas fired POX unit	4-24
Table 4.8	Typical operating conditions for a gas fired POX unit	4-24
Table 4.9	Typical operating conditions for a gas fired POX unit	4-24
Table 4.10	Typical F-T product distribution in a fixed fluidized-bed reactor	4-62
Table 4.11A	Typical F-T product distribution in fixed-bed and fixed fluidized-bed reactors	4-63
Table 4.11B	Typical compounds class & their contents in different process/product streams of a F-T plant	4-64
Table 4.12	Typical F-T product distribution in a slurry-bed reactor using an iron or cobalt catalyst	4-65
Table 4.13	Typical F-T product distribution in a slurry-bed reactor using an iron or cobalt catalyst	4-66
Table 4.14	Comparison of the catalyst and volumetric reactor productivity of iron-based catalysts in different reactor types	4-91
Table 4.15	Comparison of F-T product composition from fixed-bed and slurry-bed column reactors	4-92
Table 4.16	Comparison of F-T products composition from fixed-bed and fixed fluidized-bed reactors	4-92
Table 5.1	Large-scale GTL plant – Sasol process simulation: Design bases and assumptions	5-8
Table 5.2	Large-scale GTL plant—Sasol process simulation: Main stream flows	5-16
Table 5.3 Large-scale GTL Plant—Sasol process simulation: Major equipment 5-23
Table 5.4 Large-scale GTL plant—Sasol process: Utilities summary 5-27
Table 5.5 Large-scale GTL plant—Sasol process: Total capital investment 5-30
Table 5.6 Large-scale GTL plant—Sasol process: Capital investment by section 5-31
Table 5.7 Large-scale GTL plant—Sasol process: Production costs 5-32

Table 6.1 Large-scale GTL plant—Shell process simulation 6-6
Table 6.2 Large-scale GTL plant—Shell process simulation: Main stream flows 6-17
Table 6.3 Large-scale GTL Plant—Shell process simulation: Major equipment 6-32
Table 6.4 Large-scale GTL plant—Shell process: Utilities summary 6-36
Table 6.5 Large-scale GTL plant—Shell process: Total capital investment 6-39
Table 6.6 Large-scale GTL plant—Shell process: Capital investment by section 6-40
Table 6.7 Large-scale GTL plant—Shell process: Production costs 6-41

Table A.1 Large-scale GTL plants: Patent summaries A-2

Figures

Figure 2.1 Block flow diagram of Sasol GTL process 2-9
Figure 2.2 Block flow diagram of Shell GTL process 2-12
Figure 2.3 Equivalent crude oil price for different natural gas prices: GTL products include diesel, naphtha & LPG 2-18

Figure 4.1 Syngas clean-up process flow schematic 4-10
Figure 4.2 Equilibrium methane conversion as a function of temperature, pressure & S/C ratio 4-15
Figure 4.3 Syngas composition from different reforming processes 4-15
Figure 4.4 Basic types of SMR reformer 4-21
Figure 4.5 Steam methane reforming process flow schematic 4-23
Figure 4.6 Process flow schematic for a typical POX reactor system 4-26
Figure 4.7 Equilibrium mole fraction of syngas products as a function of reforming temperature 4-29
Figure 4.8 Adiabatic outlet temperature of syngas as a function of inlet preheat temperature 4-29
Figure 4.9 H₂ selectivity, CO selectivity, and methane conversion as a function of inlet preheat temperature 4-30
Figure 4.10 Schematic Diagram of an ATR 4-32
Figure 4.11 Calculated thermodynamic results of ATR with CO₂ recycle 4-33
Figure 4.12 Effect of steam-to-methane and oxygen-to-methane ratios on syngas composition in ATR 4-33
Figure 4.13 Equilibrium methane conversion as a function of syngas feed composition at different temperatures 4-35
Figure 4.14 Equilibrium CO₂ conversion as a function of syngas feed composition at different temperatures 4-36
Figure 4.15 Equilibrium H₂/CO ratios in syngas as a function of syngas feed composition at different temperatures 4-36
Figure 4.16 Schematic drawing of an ICI/Synetix gas-heated reformer 4-40
Figure 4.17 Schematic drawing of Haldor Topsoe convective reformer 4-41
Figure 4.18 Schematic drawing of Haldor Topsoe exchange reformer 4-42
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.19A</td>
<td>Parallel gas-fed ATR/GHR combination for syngas production</td>
<td>4-43</td>
</tr>
<tr>
<td>4.19B</td>
<td>Series gas-fed ATR/GHR combination for syngas production</td>
<td>4-44</td>
</tr>
<tr>
<td>4.20</td>
<td>Schematic drawing of Haldor Topsoe convective reformer HTCR Twin™</td>
<td>4-44</td>
</tr>
<tr>
<td>4.21</td>
<td>Typical single-train syngas reforming capacities</td>
<td>4-45</td>
</tr>
<tr>
<td>4.22</td>
<td>Equilibrium composition of shifted gas as a function of temperature (Steam-to-CO ratio = 1:1)</td>
<td>4-49</td>
</tr>
<tr>
<td>4.23</td>
<td>Equilibrium composition of shifted gas as a function of temperature (Steam-to-CO ratio = 2:1)</td>
<td>4-49</td>
</tr>
<tr>
<td>4.24</td>
<td>Effects on F-T reactor performance due to variation in space velocity</td>
<td>4-58</td>
</tr>
<tr>
<td>4.25</td>
<td>Multitubular fixed-bed reactor (Arge)</td>
<td>4-79</td>
</tr>
<tr>
<td>4.26</td>
<td>Gas-solid CFB F-T reactor</td>
<td>4-83</td>
</tr>
<tr>
<td>4.27</td>
<td>Generic schematic of a fixed fluidized-bed reactor</td>
<td>4-85</td>
</tr>
<tr>
<td>4.28</td>
<td>Advanced Synthol FFB reactor</td>
<td>4-87</td>
</tr>
<tr>
<td>4.29</td>
<td>Generic schematic of a slurry bubble column reactor</td>
<td>4-88</td>
</tr>
<tr>
<td>4.30</td>
<td>F-T slurry bubble column reactor</td>
<td>4-89</td>
</tr>
<tr>
<td>4.31</td>
<td>Flow schematic of major cuts of the product stream from a slurry-bed column reactor</td>
<td>4-98</td>
</tr>
<tr>
<td>4.32</td>
<td>Flow schematic of major cuts of the product stream from a fixed-bed reactor</td>
<td>4-100</td>
</tr>
<tr>
<td>4.33</td>
<td>Generic Fischer-Tropsch refinery configuration to increase distillate yield</td>
<td>4-102</td>
</tr>
<tr>
<td>4.34</td>
<td>Technology selection for refining of syncrude to diesel fuel for “No Minimum Diesel Fuel Density Requirement” case</td>
<td>4-102</td>
</tr>
<tr>
<td>4.35</td>
<td>LTFT diesel fuel refinery design process flow schematic–1</td>
<td>4-104</td>
</tr>
<tr>
<td>4.36</td>
<td>LTFT diesel fuel refinery design process flow schematic–2</td>
<td>4-105</td>
</tr>
<tr>
<td>4.37</td>
<td>LTFT diesel fuel refinery design process flow schematic–3</td>
<td>4-106</td>
</tr>
<tr>
<td>4.38</td>
<td>HTFT diesel fuel refinery design process flow schematic</td>
<td>4-107</td>
</tr>
<tr>
<td>4.39</td>
<td>HTFT jet fuel refinery design process flow schematic–1</td>
<td>4-108</td>
</tr>
<tr>
<td>4.40</td>
<td>HTFT jet fuel refinery design process flow schematic–2</td>
<td>4-109</td>
</tr>
<tr>
<td>4.41</td>
<td>LTFT jet fuel refinery design process flow schematic</td>
<td>4-110</td>
</tr>
<tr>
<td>4.42</td>
<td>LTFT jet fuel refinery design process flow schematic with gasoline production</td>
<td>4-111</td>
</tr>
<tr>
<td>5.1</td>
<td>Large-scale GTL plant</td>
<td>C-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of natural gas price upon production: Cost & product value of GTL product</td>
<td>5-34</td>
</tr>
<tr>
<td>6.1</td>
<td>Effect of natural gas price upon production Cost & product value of GTL product</td>
<td>C-4</td>
</tr>
<tr>
<td>6.2</td>
<td>Large-scale GTL plant shell process</td>
<td>6-43</td>
</tr>
</tbody>
</table>