ABSTRACT
Process Economics Program Report 247A
ADVANCED GAS-TO LIQUID PROCESS
(October 2006)

PEP previous reports on gas-to-liquid technologies (GTL) — PEP 135C, Opportunities for Gas-to-Liquid Technologies (February 2000) and PEP 247, Gas to Liquids Update (December 2002) — presented techno-economic evaluation of the GTL technologies of Sasol, Shell, Synthroleum, ConocoPhillips and British Petroleum. The analyses in those reports were based upon the development status of the technologies in late 1990s and early 2000s. In the past five or six years, more technological advancements have taken place, which has improved the economic position of GTL products with respect to the conventional fuels. Indeed, high oil prices of recent years have played a very significant part in escalating GTL to where we are seeing it in future.

The areas that received the maximum attention in the way of studies and R&D work include reactor design and Fischer-Tropsch (F-T) catalysts. Past industrial experience on GTL plants also extended the learning curve. The result of above is: increased productivity, higher selectivity, and enhanced working life of F-T catalysts; larger sizes and more productive designs of F-T reactor; higher production-train capacities; more efficient use of process waste-energy; plant integration capabilities, etc.

Based on recent catalysts properties and F-T-reactor design parameters described in patents and other information sources, our current report evaluates the following technologies:

1. **Syntroleum slurry-reactor based technology.** The previous report presented Syntroleum fixed-bed technology that was current in the late 1990s. That technology is no more in use. This report presents a slurry-reactor based technology, which is especially suited to offshore barge- or platform-mounted plants, though the technology is good for land-based plants as well.

2. **Syntroleum slurry-reactor based technology (with power block).** This is an enhanced or advanced version of GTL technology in which a (land-based) conceptual model of the Syntroleum GTL plant is integrated with an electric power generation facility.

3. **ExxonMobil AGC-21 technology.** This part demonstrates our interpretational design and process economics of the ExxonMobil AGC-21 GTL technology.

Our evaluation indicates that fixed capital cost and production cost for Syntroleum GTL plant are about 10% lower than those for ExxonMobil GTL plant. Syntroleum plant (with power block) has the lowest production cost but the highest product value.
ADVANCED GAS-TO-LIQUIDS PROCESS

by Syed Naqvi

October 2006

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program's reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client's use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client's use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

Steam Generation ... 5-23
F-T Reactor Staging .. 5-23
Inherent Advantages/Limitations of Process 5-24
Materials of Construction ... 5-24
Product Composition .. 5-25
Waste Streams/Process Effluents ... 5-25
COST ESTIMATES ... 5-25
Fixed-Capital Costs .. 5-26
Production Costs ... 5-26
Costs Discussion ... 5-27

6 EXXON PROCESS FOR NAPHTHA & DIESEL BY SLURRY PHASE
F-T SYNTHESIS .. 6-1

PROCESS DISCUSSION ... 6-2
Section 100-Syngas Generation .. 6-2
Section 200-F-T Synthesis ... 6-3
Section 300-Product Upgrading & Recovery 6-8

PROCESS DISCUSSION ... 6-20
Process Assumptions .. 6-20
Product Separation ... 6-20
Waste Heat Recovery System ... 6-21
Steam Generation ... 6-22
F-T Reactor Staging .. 6-22
Materials of Construction ... 6-23
Product Composition .. 6-23
Waste Streams/Process Effluents ... 6-24
COST ESTIMATES ... 6-24
Fixed-Capital Costs .. 6-24
CONTENTS (Concluded)

Production Costs .. 6-25
Cost Discussion .. 6-26

APPENDIX A: PATENT SUMMARY TABLES ... A-1
APPENDIX B: DESIGN AND COST BASES ... B-1
APPENDIX C: CITED REFERENCES .. C-1
APPENDIX D: PATENT REFERENCES BY COMPANY .. D-1
APPENDIX E: PROCESS FLOW DIAGRAM ... E-1
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Process Flow Diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>4.2</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Effect of Natural Gas Price on Production Cost and Product Value of F-T Products</td>
<td>4-36</td>
</tr>
<tr>
<td>4.3</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Product Value as a Function of Rate of Return on Investment</td>
<td>4-37</td>
</tr>
<tr>
<td>5.1</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Process Flow Diagram</td>
<td>E-11</td>
</tr>
<tr>
<td>5.2</td>
<td>Concept of Two-Stage F-T Reactor with Intermediate Cooling & Phase Separation Process Flow Diagram</td>
<td>E-17</td>
</tr>
<tr>
<td>5.3</td>
<td>Power Block (Syntroleum F-T Process) Process Flow Diagram</td>
<td>E-19</td>
</tr>
<tr>
<td>5.4</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Effect of Natural Gas Price on Production Costs and Product Value of F-T Products</td>
<td>5-34</td>
</tr>
<tr>
<td>5.5</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Product Value as a Function of Rate of Return on Investment</td>
<td>5-35</td>
</tr>
<tr>
<td>6.2</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Effect of Natural Gas on Production Costs and Product Value of F-T Products</td>
<td>6-32</td>
</tr>
<tr>
<td>6.3</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Product Value as a Function of Rate of Return on Investment</td>
<td>6-33</td>
</tr>
</tbody>
</table>
TABLES

2.1 Advanced Gas-To-Liquid Process
Total Capital Investment.. 2-10

2.2 Advanced Gas-To-Liquid Process
Sectional Capital Investment... 2-11

2.3 Advanced Gas-To-Liquid Process
Production Costs ... 2-12

4.1 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Design Bases .. 4-6

4.2 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Stream Flows... 4-11

4.3 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Major Equipment ... 4-19

4.4 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Utilities Summary... 4-22

4.5 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Total Capital Investment.. 4-30

4.6 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Capital Investment by Section... 4-31

4.7 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Production Costs (Qatar, Saudi Arab, Iran, or Iraq).. 4-32

4.7-A Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
Production Costs (US Gulf Coast Region) .. 4-34

5.1 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
with an Integrated Power Block
Design Bases .. 5-5

5.2 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
with an Integrated Power Block
Stream Flows... 5-10

5.3 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
with an Integrated Power Block
Major Equipment ... 5-17

5.4 Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis
with an Integrated Power Block
Utilities Summary... 5-20
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Total Capital Investment</td>
<td>5-28</td>
</tr>
<tr>
<td>5.6</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Capital Investment by Section</td>
<td>5-29</td>
</tr>
<tr>
<td>5.7</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Production Costs</td>
<td>5-30</td>
</tr>
<tr>
<td>5.7-A</td>
<td>Syntroleum Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis with an Integrated Power Block Production Costs</td>
<td>5-32</td>
</tr>
<tr>
<td>6.1</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Design Bases</td>
<td>6-5</td>
</tr>
<tr>
<td>6.2</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Stream Flows</td>
<td>6-10</td>
</tr>
<tr>
<td>6.3</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Major Equipment</td>
<td>6-16</td>
</tr>
<tr>
<td>6.4</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Utilities Summary</td>
<td>6-19</td>
</tr>
<tr>
<td>6.5</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Total Capital Investment</td>
<td>6-27</td>
</tr>
<tr>
<td>6.6</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Capital Investment by Section</td>
<td>6-28</td>
</tr>
<tr>
<td>6.7</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Production Costs (Qatar, Saudi Arab, Iran, Iraq)</td>
<td>6-29</td>
</tr>
<tr>
<td>6.7-A</td>
<td>Exxon Process for Naphtha & Diesel by Slurry-Phase F-T Synthesis Production Costs (US Gulf Coast Region)</td>
<td>6-31</td>
</tr>
</tbody>
</table>