Abstract
Process Economics Program Report 244
STRATEGIC BUSINESS UNITS OF EPOXY AND POLYCARBONATE RESINS
(June 2002)

This report presents economics for three of strategic business units (SBUs) for the production of polycarbonate and epoxy resins. The SBU is an integrated operation, which combines the production of the resin with the production of its respective precursor(s). The determination of the configuration of each SBU is based on the information of worldwide production capacities for the resins and their precursors. The latter includes bisphenol A (BPA) and diphenyl carbonate (DPC) for polycarbonate, and epichlorohydrin (ECH) and BPA for epoxy resins.

This report also presents review of technology and economics of the processes for the production of these precursors and the resins as listed below.

The processes for precursors
- ECH from propylene by chlorination and dehydrochlorination.
- BPA from phenol and acetone by improved cation exchange resin process
- DPC from phenol and DMC, which is prepared by oxidative carbonylation, by reactive distillation
- DPC from phenol by direct phosgenation
- DPC from phenol by oxidative carbonylation.

The processes for the resins
- Polycarbonate by interfacial process with on-site production of phosgene
- Polycarbonate by integrated melt process with DPC prepared from phenol and DMC, which is prepared by oxidative carbonylation of methanol
- Polycarbonate by integrated melt process with DPC prepared by direct phosgenation
- Polycarbonate by integrated melt process with DPC prepared by oxidative carbonylation
- Diglycidyl ether of bisphenol A (DGEBA) from BPA and ECH
- Solid Epoxy Resin from DGEBA and BPA by advancement process
- High molecular weight (MW) epoxy solution from DGEBA and BPA in MEK solvent.

The demand for polycarbonate in 2001 is estimated at 1.8 million metric tons of which 40% is accounted for by Asian consumption, more than 30% by the consumption of North America, and 22% by the consumption of Western Europe. The demand for epoxy resins in 2001 is estimated at 1.2 million metric tons, of which 48% is accounted for by Asian consumption, more
CONTENTS (Continued)

Producers of Polycarbonate ... 3-3

4 REVIEW OF TECHNOLOGY FOR EPOXY AND POLYCARBONATE RESINS 4-1

REVIEW OF TECHNOLOGY FOR PRECURSORS OF EPOXY AND POLYCARBONATE .. 4-1

Technology for Epichlorohydrin .. 4-1

Preparation of Bisphenol A .. 4-2

Preparation of Diphenyl Carbonate .. 4-3

REVIEW OF TECHNOLOGY FOR EPOXY RESINS .. 4-5

REVIEW OF TECHNOLOGY FOR POLYCARBONATE RESINS ... 4-6

Polycarbonate by Interfacial Process .. 4-6

Modified Polycarbonates .. 4-7

Polycarbonate by Transesterification (Melt) Process ... 4-8

Solid State Polycondensation ... 4-10

5 ECONOMICS FOR POLYCARBONATE AND ITS PRECURSORS 5-1

INTRODUCTION ... 5-1

COMMERCIAL PROCESSES FOR THE PRODUCTION OF BISPHENOL A 5-1

BPA from Phenol and Acetone by the Improved Process .. 5-1

Process Description ... 5-1

Cost Estimates ... 5-2

POTENTIAL PROCESSES FOR THE PRODUCTION OF DPC ... 5-11

DPC from Phenol by the Direct Phosgenation Process .. 5-11

Process Description ... 5-11

Cost Estimates ... 5-11

DPC from Phenol via DMC by Oxidative Carbonylation of Methanol ... 5-18

Process Description ... 5-18

Cost Estimates ... 5-18

DPC from Phenol by the Oxidative Carbonylation Process ... 5-26

Cost Estimates ... 5-26
CONTENTS (Continued)

COMMERCIAL PROCESSES FOR POLYCARBONATE RESINS 5-33
POLYCARBONATE BY THE INTERFACIAL PROCESS ... 5-33
Process Description.. 5-33
Cost Estimates... 5-33
POLYCARBONATE FROM BPA AND DPC BY THE MELT PROCESS 5-43
Process Description.. 5-43
Economics ... 5-43

6 ECONOMICS FOR EPOXY RESINS AND THEIR PRECURSORS 6-1
INTRODUCTION ... 6-1
EPICHLOROHYDRIN FROM PROPYLENE AND CHLORINE VIA ALLYL CHLORIDE ... 6-1
Process Description.. 6-1
Economics ... 6-1
PRODUCTION OF EPOXY RESINS ... 6-6
LIQUID EPOXY RESIN FROM BPA AND ECH BY CONTINUOUS PROCESS 6-6
Process Description.. 6-6
Economics ... 6-6
SOLID EPOXY RESIN FROM DGEBA AND BPA BY ADVANCEMENT PROCESS 6-14
Process Description.. 6-14
Economics ... 6-14
HIGH MW EPOXY SOLUTION FROM DGEBA AND BPA IN METHYL ETHYL KETONE ... 6-20
Process Description.. 6-14
Economics ... 6-14

7 ECONOMICS FOR STRATEGIC BUSINESS UNITS FOR EPOXY AND POLYCARBONATE RESINS ... 7-1
INTRODUCTION ... 7-1
<table>
<thead>
<tr>
<th>Sect.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRATEGIC UNITS FOR THE PRODUCTION OF POLYCARBONATE RESINS...</td>
<td>7-1</td>
</tr>
<tr>
<td>PC-SBU1 Description</td>
<td>7-1</td>
</tr>
<tr>
<td>PC-SBU1 Cost Estimates</td>
<td>7-1</td>
</tr>
<tr>
<td>PC-SBU2A Description</td>
<td>7-7</td>
</tr>
<tr>
<td>PC-SBU2A Cost Estimates</td>
<td>7-7</td>
</tr>
<tr>
<td>PC-SBU2B Description</td>
<td>7-12</td>
</tr>
<tr>
<td>PC-SBU2B Cost Estimates</td>
<td>7-12</td>
</tr>
<tr>
<td>PC-SBU2C Description</td>
<td>7-17</td>
</tr>
<tr>
<td>PC-SBU2C Cost Estimates</td>
<td>7-17</td>
</tr>
<tr>
<td>STRATEGIC UNITS FOR THE PRODUCTION OF EPOXY RESINS</td>
<td>7-22</td>
</tr>
<tr>
<td>EP-SBU1 Description</td>
<td>7-22</td>
</tr>
<tr>
<td>EP-SBU1A Cost Estimates</td>
<td>7-22</td>
</tr>
<tr>
<td>EP-SBU1B Cost Estimates</td>
<td>7-27</td>
</tr>
<tr>
<td>EP-SBU1C Cost Estimates</td>
<td>7-32</td>
</tr>
<tr>
<td>EP-SBU1D Cost Estimates</td>
<td>7-37</td>
</tr>
<tr>
<td>ECONOMICS COMPARISON OF SBUS FOR POLYCARBONATE AND EPOXY RESINS</td>
<td>7-42</td>
</tr>
<tr>
<td>APPENDIX A: PATENT SUMMARY TABLES</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B: DESIGN AND COST BASES</td>
<td>B-1</td>
</tr>
<tr>
<td>APPENDIX C: CITED REFERENCES</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D: PATENT REFERENCES BY COMPANY</td>
<td>D-1</td>
</tr>
<tr>
<td>APPENDIX E: PROCESS FLOW DIAGRAM</td>
<td>E-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>BPA from Phenol and Acetone by Improved Process</td>
<td>E-3</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>DPC from Phenol by Direct Phosgenation Process</td>
<td>E-5</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>DPC from Phenol via DMC by Oxidative Carbonylation of Methanol</td>
<td>E-7</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>DPC from Phenol by Oxidative Carbonylation Process</td>
<td>E-9</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Polycarbonate by Interfacial Process</td>
<td>E-11</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Polycarbonate by Conventional Melt Process</td>
<td>E-19</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Epichlorohydrin from Propylene via Allyl Chloride by Chlorination</td>
<td>E-21</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Diglycidyl Ether of Bisphenol A by Continuous Process</td>
<td>E-25</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Solid Epoxy Resin from BDEBA and Bisphenol A</td>
<td>E-27</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>High MW Epoxy Resin Solution from DGEBA and Bisphenol A</td>
<td>E-29</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
</tbody>
</table>
TABLES (Continued)

5.5 Bisphenol A by Improved Cation Exchange Resin Technology
Production Costs ... 5-9

5.6 Diphenyl Carbonate from Phenol by Direct Phosgenation
Utilities Summary ... 5-12

5.7 Diphenyl Carbonate from Phenol by Direct Phosgenation
Major Equipment ... 5-13

5.8 Diphenyl Carbonate from Phenol by Direct Phosgenation
Total Capital Investment .. 5-15

5.9 Diphenyl Carbonate from Phenol by Direct Phosgenation
Production Costs ... 5-16

5.10 Diphenyl Carbonate from Phenol via DMC by Oxidative
Carbonylation and Reactive Distillation
Utilities Summary ... 5-19

5.11 Diphenyl Carbonate from Phenol via DMC by Oxidative
Carbonylation and Reactive Distillation
Major Equipment ... 5-20

5.12 Diphenyl Carbonate from Phenol via DMC by Oxidative
Carbonylation and Reactive Distillation
Total Capital Investment .. 5-22

5.13 Diphenyl Carbonate from Phenol via DMC by Oxidative
Carbonylation and Reactive Distillation
Capital Investment by Section ... 5-23

5.14 Diphenyl Carbonate from Phenol via DMC by Oxidative
Carbonylation and Reactive Distillation
Production Costs ... 5-24

5.15 Diphenyl Carbonate from Phenol by Oxidative Carbonylation with Fixed-Bed
Reactors
Utilities Summary ... 5-27

5.16 Diphenyl Carbonate from Phenol by Oxidative Carbonylation with Fixed-Bed
Reactors
Major Equipment ... 5-28

5.17 Diphenyl Carbonate from Phenol by Oxidative Carbonylation with Fixed-Bed
Reactors
Total Capital Investment .. 5-30

5.18 Diphenyl Carbonate from Phenol by Oxidative Carbonylation with Fixed-Bed
Reactors
Production Costs ... 5-31
TABLES (Continued)

5.20 Polycarbonate by Interfacial Process with On-Site Phosgene Generation
Utilities Summary ... 5-34

5.21 Polycarbonate by Interfacial Process with On-Site Phosgene Generation
Major Equipment ... 5-35

5.22 Polycarbonate by Interfacial Process with On-Site Phosgene Generation
Total Capital Investment ... 5-38

5.23 Polycarbonate by Interfacial Process with On-Site Phosgene Generation
Capital Investment by Section ... 5-39

6.1 Epichlorohydrin from Propylene Via Allyl Chloride by Chlorination
Utilities Summary ... 6-2

6.2 Epichlorohydrin from Propylene Via Allyl Chloride by Chlorination
Total Capital Investment ... 6-3

6.3 Epichlorohydrin from Propylene Via Allyl Chloride by Chlorination
Production Costs ... 6-4

6.4 LER from BPA and ECH A by Continuous Process
Utilities Summary ... 6-7

6.5 LER from BPA and ECH A by Continuous Process
Major Equipment ... 6-8

6.6 LER from BPA and ECH A by Continuous Process
Total Capital Investment ... 6-10

6.7 LER from BPA and ECH A by Continuous Process
Capital Investment by Section ... 6-11

6.8 LER from BPA and ECH A by Continuous Process
Production Costs ... 6-12

6.9 Solid Epoxy Resin from DGEBA and Bisphenol A
Utilities Summary ... 6-15

6.10 Solid Epoxy Resin from DGEBA and Bisphenol A
Major Equipment ... 6-16

6.11 Solid Epoxy Resin from DGEBA and Bisphenol A
Total Capital Investment ... 6-17

6.12 Solid Epoxy Resin from DGEBA and Bisphenol A
Production Costs ... 6-18

6.13 High MW Epoxy Resin Solution from DGEBA and Bisphenol A
Utilities Summary ... 6-21
TABLES (Continued)

6.14 High MW Epoxy Resin Solution from DGEBA and Bisphenol A
 Major Equipment ... 6-22

6.15 High MW Epoxy Resin Solution from DGEBA and Bisphenol A
 Total Capital Investment .. 6-23

6.16 High MW Epoxy Resin Solution from DGEBA and Bisphenol A
 Production Costs ... 6-24

7.1 Polycarbonate by Interfacial Process With On-Site Phosgene Generation
 Production Costs .. 7-3

7.2 Polycarbonate by Interfacial Process With On-Site Phosgene Generation
 Production Costs (captive BPA) .. 7-5

7.3 Polycarbonate by Non-Phosgene Melt Process Via DMC with Double-
 Tube Loop Reactors
 Production Costs .. 7-8

7.4 Polycarbonate by Non-Phosgene Melt Process Via DMC with Double-
 Tube Loop Reactors
 Production Costs (captive BPA) .. 7-10

7.5 Polycarbonate by Melt Process Via Diphenyl Carbonate by Direct Phosgenation
 Production Costs .. 7-13

7.6 Polycarbonate by Melt Process Via Diphenyl Carbonate by Direct Phosgenation
 Production Costs (captive BPA) .. 7-15

7.7 Polycarbonate by Nonphosgenation Melt Process Via Diphenyl Carbonate by
 Oxidative Carbonylation
 Production Costs .. 7-18

7.8 Polycarbonate by Nonphosgenation Melt Process Via Diphenyl Carbonate by
 Oxidative Carbonylation
 Production Costs (captive BPA) .. 7-20

7.9 Diglycidyl Ether of Bisphenol A by Continuous Process
 Production Costs .. 7-23

7.10 Diglycidyl Ether of Bisphenol A by Continuous Process
 Production Costs (captive BPA and ECH) 7-25

7.11 Diglycidyl Ether of Bisphenol A by Continuous Process
 Production Costs .. 7-28

7.12 Diglycidyl Ether of Bisphenol A by Continuous Process
 Production Costs (captive BPA and ECH) 7-30

7.13 Solid Epoxy Resin from DGEBA and Bisphenol A
 Production Costs .. 7-33
TABLES (Concluded)

7.14 Solid Epoxy Resin from DGEBA and Bisphenol A
Production Costs (captive BPA and DGEBA) ... 7-35

7.15 High MW Epoxy Resin Solutions from DGEBA and Bisphenol A
Production Costs ... 7-38

7.16 High MW Epoxy Resin Solutions from DGEBA and Bisphenol A
Production Costs (captive BPA and DGEBA) .. 7-40

7.17 Economics of SBUs for Polycarbonate Resins
Economic Comparison .. 7-43

7.18 Economics of SBUs for Epoxy Resins
Economic Comparison .. 7-44
than 24% by the consumption of North America, and 23% by the consumption of Western Europe.