Abstract

Process Economics Program Report 243
Fuel Cells for Vehicles and Power
(December 2001)

Fuel cells are an efficient and flexible power source. The technology is advancing rapidly for both vehicle and power applications. Unlike conventional fossil fuel power sources, fuel cells are capable of generating electrical power from a fuel stream and an oxidant stream without producing substantial amounts of undesirably environmental pollutants such as sulfur oxides, nitrogen oxides, and carbon monoxide. Most major auto manufacturers are deeply involved in technology development, typically in partnership with fuel cell and energy companies, and plan to launch fuel-cell powered vehicles as early as 2002. Breakthroughs are being announced in critical need areas such as compact and reliable fuel processors. The biggest question – and potential barrier to widespread use of fuel cell vehicles – remains the feedstock choice. Any fuel other than gasoline will require a new global infrastructure. Continued cost reduction for the fuel processing as well as the fuel cell modules is the key driver for economic viability for vehicles. Stationary power generation by fuel cells may be somewhat ahead of vehicle use due to more attractive economics, particularly in the niche market for moderate size power generation units.

This report has examined the current state of development for both vehicle use and stationary power generation in small (500KW to 10MW) fuel cell systems may soon be competitive in the distributed power market, aimed at customers that are dependent on reliable power supply, such as hospital, manufacturing plants and server farms.

The commercial viability of fuel cell systems will depend on the ability to efficiently and cleanly convert conventional hydrocarbon fuel sources to a hydrogen rich gas stream. The most advanced systems, and those potentially closest to commercialization are based on development of gasoline fueled polymer electrolyte membrane fuel cells for automotive applications, and development of natural gas based solid oxide fuel cells for stationary power generation.
FUEL CELLS FOR VEHICLES AND POWER

by RONALD M. SMITH

December 2001

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
TABLE OF CONTENTS

Table of Contents ..i
Table of Tables .. viii
Table of Figures... x

INTRODUCTION .. 1-1

LOW TEMPERATURE FUEL CELLS... 1-2
 Proton Exchange Membrane Fuel Cell (PEMFC) .. 1-2
 Alkaline Fuel Cell (AFC) .. 1-2
 Phosphoric Acid Fuel Cell (PAFC) .. 1-3

HIGH TEMPERATURE FUEL CELLS.. 1-3
 Molten Carbonate Fuel Cell (MCFC) ... 1-4
 Solid Oxide Fuel Cell (SOFC) .. 1-4

AUTOMOTIVE FUEL CELLS ... 1-5

FUEL CELL VEHICLES.. 1-6

STATIONARY FUEL CELLS ... 1-8

FUEL CELL CHARACTERISTICS .. 1-10

REPORT FOCUS .. 1-12

SUMMARY .. 2-1

GASOLINE FUELED PEMFC'S FOR AUTOMOTIVE APPLICATIONS .. 2-1
 Markets... 2-1
 Technology.. 2-3
 Fuel Efficiency and Emissions... 2-4
 Fuel Processor Development .. 2-4
 Fuel Cell Stacks .. 2-5
 Economics... 2-6
 Fuel Cell Subsystem... 2-7
 Fuel Cell Engine System ... 2-8

SOLID OXIDE FUEL CELLS FOR COMMERCIAL POWER PLANT APPLICATIONS 2-8
 Markets... 2-9
SOFC Industrial Development Programs ... 3-47
Japan ... 3-50
Moonlight/New Sunshine Project ... 3-50
Planar SOFC’s ... 3-54
Tubular SOFCs .. 3-54
Cost Reduction in Tubular Stacks .. 3-55

AUTOMOTIVE FUEL CELLS ... 3-55
Ballard Power Systems (BPS) .. 3-58
International Fuel Cells (IFC) ... 3-59
Other PEMFC Developers .. 3-59

AUTOMOBILE MANUFACTURERS ... 3-59
U. S. Automobile Manufacturers .. 3-60
Chrysler ... 3-60
Ford .. 3-61
General Motors .. 3-62
Automobile Manufacturers in Europe and Japan .. 3-63
Daimler-Benz .. 3-63
Toyota ... 3-65
Honda .. 3-66

COMPANY DIRECTED AUTOMOTIVE FUEL CELL DEVELOPMENT PROGRAMS 3-66
PEMFC Stack Developers .. 3-68
Allied Signal (Honeywell) ... 3-68
Ballard Power Systems .. 3-68
DeNora ... 3-69
Energy Partners ... 3-69
General Motors ... 3-70
Honda .. 3-70
H-Power .. 3-70
International Fuel Cells (IFC) .. 3-71
Mitsubishi Electric .. 3-71
Nissan ... 3-72
Plug Power ... 3-72
Siemens .. 3-72
Toyota .. 3-72
TECHNOLOGY REVIEW

AUTOMOTIVE FUEL CELL VEHICLES

Flexible Fuel Processors

Reformer Technology

Autothermal Reactor

Water Gas Shift Reactions

Preferential Oxidation Reaction (PROX)

Anode Gas Oxidizer (AGO)

Water Management System

Sulfur Removal

Automotive Fuel Cell Fuel Processing

Gasoline Processing

Methanol Processing

R&D Development Needs

PROTON EXCHANGE MEMBRANE FUEL CELLS

Electrolytes

Electrodes

Interconnection of Cells

PEMFC Performance

Influence of Operating Temperature

Influence of Operating Pressure

R&D focus

FUEL CELL SYSTEMS

Fuel Processing

Fuel Cell Operation

Air Supply Subsystem

Water Management Subsystem

Heat Management Subsystem

FUEL CELL VEHICLE POWER TRAINS

STATIONARY SOFC POWER SYSTEMS

Fuel Processing

Solid Oxide Fuel Cell Components
TABLE OF TABLES

1.1 ELECTROCHEMICAL REACTIONS IN FUEL CELLS .. 1-1
1.2 Advantages/Disadvantages of Stationary Fuel Cell Systems 1-9
1.3 Characteristics of Fuel Cell Types ... 1-10
2.1 Fuel Efficiency and Emissions of Alternately Powered Vehicles 2-4
2.2 Gasoline Fueled PEMFC Engine System Costs ... 2-7
3.1 Typical U.S. Power Plant Scales 1980 - 2000 .. 3-3
3.2 Scales of Selected Electricity Use in the United States 3-4
3.3 Ultra Fuel Cell Collaborative Development Teams 3-9
3.4 Projected Worldwide Stationary Power Generation Capacity 3-11
3.5 Key Driving Forces for Industrial On-Site Generation 3-14
3.7 Opportunities for Stationary Micropower and Fuel Cell Hybrids 3-17
3.8 Projected Stationary Fuel Cell Cost and Performance 3-18
3.9 Distributed Power Market Accelerators .. 3-21
3.10 Barriers to Stationary Fuel Cell Systems Commercialization 3-24
3.11 Microturbine Developers and Vendors .. 3-26
3.12 Reciprocating Engine Micropower Developers and Vendors 3-29
3.13 Combustion Based Micropower Options .. 3-30
3.14 Stationary Fuel Cells - Technology Commercialization Status 3-34
3.15 World Stationary Fuel Cell Developers .. 3-35
3.16 Stationary Fuel Cell Commercial Deployment Goals 3-39
3.17 NSS Project Targets for Module Development 3 Kw Model Stack 3-52
3.18 Commercial Organizations Developing PEMFC Stack Technology 3-58
3.19 U.S. National Laboratory R&D Projects .. 3-78
3.20 U.S. DOE Funded Automotive PEMC Contract Research 3-79
3.21 European Commission Sponsored Automotive PEMFC Projects 3-80
3.22 Commercial Fuel Processor Technology Companies 3-83
3.23 Characteristics of the ADL Flexi-Fuel Reformer^ 3-84
TABLE OF FIGURES

3.1 WORLD SCALE CHEMICAL/PETROCHEMICAL PROCESS ENERGY NEEDS 3-5
4.1 PEMFC REFORMER PROCESS .. 4-13
4.2 FEASIBLE REGIONS FOR FUEL PROCESSING .. 4-14
4.3 PEMFC MEMBRANE ELECTRODE ASSEMBLY ... 4-27
4.4 AUTOMOTIVE FUEL CELL SYSTEM SCHEMATIC ... 4-34
4.5 FUEL CELL VEHICLE POWERTRAIN SYSTEM ... 4-37
4.6 AUTOMOTIVE FUEL CELL VEHICLE SYSTEM ... 4-38
4.7 TUBULAR SOLID OXIDE FUEL CELL COMPONENTS 4-44
4.8 SOLID OXIDE FUEL CELL TUBE BUNDLE .. 4-45
4.9 TUBULAR SOLID OXIDE FUEL CELL STACK ... 4-46
4.10 TUBULAR SOLID OXIDE FUEL CELL MODULE ... 4-46
4.11 SIMPLE CYCLE SOFC COGENERATION SYSTEM 4-51
4.12 SOFC/GAS TURBINE HYBRID SYSTEM .. 4-52
4.13 SOFC/STEAM TURBINE COMBINED CYCLE SYSTEM 4-54
4.14 MULTISTAGED INDUSTRIAL SOLID OXIDE ULTRAFUELCELL SYSTEM 4-57
4.15 HIGH EFFICIENCY SOFC-PEMFC HYBRID SYSTEM 4-59
6.1 STATIONARY POWER - TUBULAR SOLID OXIDE/GAS TURBINE HYBRID 6-10