Abstract
Process Economics Program Report 236
CHEMICALS FROM RENEWABLE RESOURCES
(March 2001)

Driven by environmental concerns and the concept of sustainability, the chemical industry has seriously begun exploring bio-based or renewable feedstocks for producing chemicals. This transition to renewable feedstocks is impossible, however, without the development of the appropriate technology and infrastructure. Some of the technology developments which are needed and are currently underway include knowledge of biochemical and fermentation fundamentals and related progress in process technology and agricultural economics.

This report focuses on two chemicals that have had significant technical progress made towards developing routes from renewable feedstocks. The first is lactic acid which is already primarily manufactured by fermentation. The other is succinic acid, which is currently produced petrochemically but may be produced from renewable feedstocks in the future.

The conventional fermentation process for making lactic acid is difficult to scale-up due to the large quantity of salt wastes that are generated. Several new biotechnology-based developments are underway that promise to allow large scale lactic acid production at more efficient process economics. This PEP Report provides a detailed technical and economic comparison of conventional and newly developed fermentation processes for making lactic acid.

Succinic acid could serve as an intermediate to produce several larger volume chemicals if its price were to come down dramatically. Current production is based on petrochemical routes, but fermentation technology has been developed to make use of low cost renewable feedstocks. We evaluate the attractiveness of making succinic acid by fermentation in this PEP Report.

For those in the chemical industry, this report will be useful for the comparative economics it provides, as well as for its extensive review of the issues associated with renewable feedstocks. The report reviews the renewable feedstock infrastructure that is in place today and also provides some pricing history. An industry status section provides the state of the lactic acid and succinic acid markets and producers.
TABLE OF CONTENTS

TABLE OF CONTENTS ... III
TABLE OF FIGURES ... VI
TABLE OF TABLES .. VII
1 INTRODUCTION .. 1-1
2 SUMMARY ... 2-1
 Renewable Feedstocks ... 2-1
 Lactic Acid ... 2-2
 Succinic Acid .. 2-3
TECHNICAL ASPECTS .. 2-3
 Lactic Acid by Low pH Fermentation .. 2-3
 Lactic Acid by pH 6 Fermentation ... 2-4
 Succinic Acid by Fermentation ... 2-4
ECONOMIC ASPECTS .. 2-4
3 INDUSTRY STATUS .. 3-1
 INTRODUCTION .. 3-1
 RENEWABLES VISION 2020 .. 3-2
 LACTIC ACID ... 3-4
 Lactic Acid Production ... 3-5
 Lactic Acid Pricing .. 3-7
 SUCCINIC ACID ... 3-7
 Succinic Acid Production ... 3-8
 Succinic Acid Pricing .. 3-10
4 RENEWABLE FEEDSTOCKS ... 4-1
 AGRICULTURAL CROPS ... 4-1
 FOREST CROPS .. 4-8
 BIOLOGICAL WASTES ... 4-8
 Crop Residues ... 4-9
 Wood and Paper Wastes ... 4-10
 Dairy Wastes .. 4-10
5 CHEMISTRY ... 5-1
DISCUSSION OF CAPITAL COST AND PRODUCT VALUE .. 7-16

8 SUCCINIC ACID ... 8-1
 PROCESS REVIEW .. 8-1
 Fermentation .. 8-1
 Separation and Purification ... 8-2
 PROCESS DESCRIPTION ... 8-3
 FERMENTATION AND BIOMASS SEPARATION ... 8-4
 ELECTRODIALYSIS AND CRYSTALLIZATION .. 8-4
 PROCESS DISCUSSION ... 8-11
 Selection of Fermentation Design Patent .. 8-11
 Selection of Electrodialysis Design Patent ... 8-11
 Maintenance .. 8-12
 Waste Treatment ... 8-12
 Materials of Construction ... 8-13
 CAPITAL AND PRODUCTION COSTS .. 8-13
 DISCUSSION OF PRODUCT VALUE .. 8-13

APPENDIX A PROCESS FLOW DIAGRAMS .. A-1
 LACTIC ACID BY LOW pH FERMENTATION .. A-2
 LACTIC ACID BY pH-6 FERMENTATION .. A-3
 SUCCINIC ACID BY FERMENTATION .. A-4

APPENDIX B PATENT SUMMARIES ... B-1
 LACTIC ACID .. B-2
 SUCCINIC ACID .. B-2

APPENDIX B CITED LITERATURE ... C-1
TABLE OF FIGURES

Figure 4.1 FEEDSTOCK PRICE COMPARISON ... 4-2
Figure 4.2 COMMODITY PRICE PROJECTIONS .. 4-2
Figure 4.3 WET MILL CORN PROCESSING ... 4-4
Figure 5.1 THE EMBDEN-MEYERHOF-PARNAS CATABOLISM PATHWAY 5-4
Figure 5.2 The PHOSPHOENOLPYRUVATE CARBOXYKINASE PATHWAY 5-9
Figure 6.1 UNDISSOCIATED LACTIC ACID VERSUS pH ... 6-3
Figure 6.2 LACTIC ACID DOWNSTREAM PROCESSING ... 6-3
Figure 6.3 MEMBRANE-MEDIATED EXTRACTIVE FERMENTATION 6-5
Figure 6.4 GROWTH INHIBITION OF L. delbrueckii BY ALAMINE 336 6-6
Figure 6.5 TWO STAGE EXTRACTIVE FERMENTATION ... 6-7
Figure 6.6 Process Design for Lactic Acid by Low pH Process A-2
Figure 7.1 Process Design for Lactic Acid by pH 6 Process .. A-3
Figure 8.1 Process Design for Succinic Acid Process ... A-4
TABLE OF TABLES

Table 2.1 CHEMICALS FROM RENEWABLE RESOURCES MFGNG COST SUMMARY 2-5
Table 2.2 INVESTMENT COST SUMMARY ... 2-6
Table 2.3 CHEMICALS FROM RENEWABLE RESOURCES 2-6
Table 3.1 2000 DOE AWARDS ... 3-4
Table 3.2 PRODUCERS OF LACTIC ACID ... 3-6
Table 3.3 LACTIC ACID PRICES IN THREE GEOGRAPHIC REGIONS (1993-1999) .. 3-7
Table 3.4 PRODUCERS OF SUCCINIC ACID .. 3-8
Table 4.1 CORN MILLING PRODUCTS ... 4-3
Table 4.2 U.S. WET CORN MILL FACILITIES ... 4-5
Table 4.3 1997 U.S. CORN WET MILL PRODUCTS ... 4-6
Table 4.4 AVAILABLE WASTE BIOMASS IN THE UNITED STATES 4-9
Table 5.1 SELECTED PROPERTIES OF LACTIC ACID ... 5-2
Table 5.1 SELECTED PROPERTIES OF SUCCINIC ACID AND ANHYDRIDE 5-7
Table 6.2 LACTIC ACID BY FERMENTATION DESIGN BASES 6-10
Table 6.3 LACTIC ACID BY LOW pH FERMENTATION STREAM FLOWS 6-11
Table 6.4 LACTIC ACID BY LOW pH FERMENTATION MAJOR EQUIPMENT 6-13
Table 6.5 LACTIC ACID BY LOW pH FERMENTATION UTILITIES SUMMARY 6-15
Table 6.6 LACTIC ACID BY LOW pH FERMENTATION TOTAL CAPITAL INVESTMENT 6-20
Table 6.7 LACTIC ACID BY FERMENTATION CAPITAL INVESTMENT BY SECTION ... 6-21
Table 6.8 LACTIC ACID BY pH 6 FERMENTATION PRODUCTION COSTS 6-22
Table 6.9 LACTIC ACID BY pH 6 FERMENTATION DIRECT COSTS BY SECTION 6-24
Table 7.1 LACTIC ACID BY pH 6 FERMENTATION DESIGN BASES 7-3
Table 7.2 LACTIC ACID BY pH 6 FERMENTATION STREAM FLOWS 7-4
Table 7.3 LACTIC ACID BY pH 6 FERMENTATION MAJOR EQUIPMENT 7-5
Table 7.4 LACTIC ACID BY pH 6 FERMENTATION UTILITIES SUMMARY 7-8
Table 7.5 LACTIC ACID BY pH 6 FERMENTATION TOTAL CAPITAL INVESTMENT ... 7-11
Table 7.6 LACTIC ACID BY pH 6 FERMENTATION CAPITAL INVESTMENT BY SECTION 7-12
Table 7.7 LACTIC ACID BY pH 6 FERMENTATION PRODUCTION COSTS 7-13
Table 7.8 LACTIC ACID BY pH 6 FERMENTATION DIRECT COSTS BY SECTION 7-15
Table 8.2 SUCCINIC ACID BY FERMENTATION DESIGN BASES 8-5
Table 8.3 SUCCINIC ACID BY FERMENTATION STREAM FLOWS 8-6
Table 8.4 SUCCINIC ACID BY FERMENTATION MAJOR EQUIPMENT 8-9
Table 8.5 SUCCINIC ACID BY FERMENTATION UTILITIES SUMMARY 8-10
Table 8.6 SUCCINIC ACID WASTE STREAMS ... 8-12
Table 8.7 SUCCINIC ACID BY FERMENTATION TOTAL CAPITAL INVESTMENT 8-14
Table 8.8 SUCCINIC ACID BY FERMENTATION CAPITAL INVESTMENT BY SECTION .. 8-15
Table 8.9 SUCCINIC ACID BY FERMENTATION PRODUCTION COSTS 8-16
Table 6.1 LACTIC ACID FERMENTATION STUDIES ... A-3
Table 8.1 PATENT SUMMARY FOR SUCCINIC ACID ... A-8