Abstract
Process Economics Program Report 235
CHEMICALS FROM ETHANOL
(November 2007)

Technologies for producing chemicals from ethanol are well known and have been employed commercially for several decades. Ethylene production by ethanol dehydration, for example, was widely used in the United States and Western Europe during the first half of the 20th century, and in Brazil and India during the 1950s and 1960s. Thereafter, the steam cracking process, which employs petroleum fractions and natural gas liquids as feedstocks, emerged as the dominant method for large-scale ethylene production worldwide. As a consequence of declining oil prices in the 1980s and 1990s and wide availability of olefins from steam cracking, most processes using ethanol as feedstock could no longer compete with their corresponding petrochemical routes, and the ethanol-based chemical industry went into decline.

With the recent boom in the fuel ethanol market, particularly in Brazil and the United States, the production of chemicals from ethanol has attracted renewed interest. Environmental concerns over the use of fossil-based resources and the concept of sustainability have also broadened worldwide interest in renewable sources for both chemical feedstocks and for energy. In the case of bio-derived ethanol, production costs declined significantly over the years as a result of productivity improvements and economies of scale. These, combined with the promise of new technologies from cheap cellulosic biomass, could make ethanol a competitive feedstock for chemicals in the future.

This report presents a technical and economical analysis of the production of chemicals from ethanol, with a special focus on ethylene, acetic acid and ethyl acetate. We have developed conceptual designs and associated cost estimates for the production of each of these three products from ethanol. For ethylene and acetic acid, we use economic models to examine the competitiveness of the ethanol-based process vis-à-vis the existing petrochemical routes. For ethyl acetate, we compare the economics of the conventional process of esterification of acetic acid and ethanol, with those of a recent dehydrogenation process developed by Davy Process Technology. The general conclusions are summarized below:

- The production of ethylene from ethanol can be cost-competitive with steam cracking at small plant capacities. However, based on historical price trends, a dehydration plant that purchases ethanol and sells ethylene at normal market prices would be only marginally profitable. Economics would improve if the ethylene plant could be integrated with the upstream ethanol plant, or if the bio-based ethylene could be sold at a premium over petrochemical ethylene.

- Both capital and production costs of the ethanol-based route to produce acetic acid are currently much higher than those for the methanol carbonylation process.

- Davy’s technology to produce ethyl acetate from ethanol by dehydrogenation is very economically competitive with the conventional esterification process.
CHEMICALS FROM ETHANOL

by MARCOS A. NOGUEIRA CESAR

November 2007

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition, the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America, and Mexico.
CONTENTS

1 INTRODUCTION .. 1-1

2 SUMMARY ... 2-1
 GENERAL ASPECTS... 2-1
 Ethanol Production and Prices .. 2-1
 Ethanol-Based Chemicals .. 2-2
 Ethylene .. 2-3
 Acetic Acid .. 2-3
 Ethyl Acetate .. 2-4
 TECHNICAL ASPECTS ... 2-5
 Ethanol to Ethylene Technology ... 2-5
 Ethanol to Acetic Acid Technology .. 2-5
 Ethanol to Ethyl Acetate Technology .. 2-6
 Conventional Esterification ... 2-6
 Ethanol Dehydrogenation ... 2-6
 PROCESS ECONOMICS ... 2-7
 Ethylene from Ethanol ... 2-7
 Acetic Acid from Ethanol ... 2-9
 Ethyl Acetate from Ethanol ... 2-11

3 INDUSTRY STATUS.. 3-1
 ETHANOL SUPPLY AND DEMAND ... 3-1
 U.S. Ethanol Status ... 3-3
 Brazilian Ethanol Status ... 3-4
 Other Regions .. 3-6
 ETHANOL TARIFFS AND TRADE .. 3-7
 ETHANOL FEEDSTOCKS .. 3-8
 Sugarcane (Brazil) .. 3-8
CONTENTS (Continued)

Ethanol Oxidation—Section 100 ... 5-5
Acetaldehyde Oxidation—Section 200 .. 5-6
Product Recovery—Section 300 ... 5-6
Process Discussion .. 5-21
Acetaldehyde Production ... 5-21
Acetaldehyde Oxidation ... 5-21
Materials of Construction .. 5-22
Cost Estimates .. 5-22
Capital Investment .. 5-22
Production Cost .. 5-22
Comparison of Process Economics ... 5-23

6 ETHYL ACETATE FROM ETHANOL ... 6-1
TECHNOLOGY REVIEW .. 6-1
Esterification of Acetic Acid and Ethanol .. 6-1
 Liquid-Phase Esterification Using Sulfuric Acid Catalyst 6-2
 Liquid-Phase Esterification Using Solid Catalyst 6-2
 Vapor-Phase Esterification .. 6-3
Ethanol Dehydrogenation .. 6-3
Direct Ethanol Oxidation ... 6-4
Acetaldehyde Condensation (Tishchenko Reaction) 6-5
Direct Addition of Ethylene to Acetic Acid .. 6-5
Transesterification .. 6-6
Co-Product of Acetic Acid by Butane Oxidation 6-7
ETHYL ACETATE FROM ACETIC AND ETHANOL BY ESTERIFICATION 6-7
Process Description ... 6-7
Process Discussion .. 6-12
Cost Estimates .. 6-12
Capital Investment .. 6-12
CONTENTS (Concluded)

Production Cost .. 6-13

ETHYL ACETATE FROM ETHANOL BY DEHYDROGENATION 6-19

Process Description .. 6-19
 Reaction--Section 100 ... 6-19
 Product Separation--Section 200 .. 6-20

Process Discussion .. 6-29
 Reactor Design ... 6-29
 Product Recovery ... 6-29
 Ethanol Dehydration ... 6-30
 Cost Estimates ... 6-30
 Capital Investment .. 6-30
 Production Cost .. 6-30

COMPARISON OF PROCESS ECONOMICS .. 6-31

APPENDIX A: PATENT SUMMARY TABLES .. A-1

APPENDIX B: DESIGN AND COST BASES .. B-1

APPENDIX C: CITED REFERENCES .. C-1

APPENDIX D: PATENT REFERENCES BY COMPANY D-1

APPENDIX E: PROCESS FLOW DIAGRAM .. E-1
ILLUSTRATIONS (Concluded)

5.2 Acetic Acid from Ethanol via Acetaldehyde
 Effect of Plant Capacity on Investment Costs ... 5-26

5.3 Acetic Acid from Ethanol via Acetaldehyde
 Effect of Ethanol Price on Acetic Acid Production Cost and Product Value 5-29

6.1 Ethyl Acetate from Acetic Acid and Ethanol by Esterification
 Process Flow Diagram .. E-11

6.2 Ethyl Acetate from Acetic Acid and Ethanol by Esterification
 Effect of Plant Capacity on Investment Costs ... 6-15

6.3 Ethyl Acetate from Acetic Acid and Ethanol by Esterification
 Effect of Ethanol Price on Ethyl Acetate Production Costs and Product Value 6-18

6.4 Ethyl Acetate from Ethanol by Dehydrogenation
 Process Flow Diagram .. E-13

6.5 Ethyl Acetate from Ethanol by Dehydrogenation
 Effect of Plant Capacity on Investment Costs ... 6-34

6.6 Ethyl Acetate from Ethanol by Dehydrogenation
 Effect of Ethanol Price on Ethyl Acetate Production Cost and Product Value 6-37

6.7 Comparison of Ethyl Acetate Process Economics 6-39
TABLES

2.1 Acetic Acid from Ethanol via Acetaldehyde
Comparison of Process Economics ... 2-10

2.2 Comparison of Ethyl Acetate Process Economics .. 2-12

3.1 Ethanol Import Tariffs ... 3-7

3.2 Results of Technology Improvements in Brazil ... 3-10

3.3 Wet Milling Versus Dry Milling ... 3-11

3.4 Historical Ethanol to Ethylene Plants ... 3-24

3.5 Announced Ethanol to Ethylene Plants ... 3-25

3.6 Ethanol to Acetic Acid Plants ... 3-26

3.7 World Ethyl Acetate Capacity in 2006 .. 3-30

3.8 Announced New Ethyl Acetate Capacity in China .. 3-34

4.1 Ethylene by Ethanol Dehydrogenation
Patent Summary .. A-3

4.2 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Design Bases and Assumptions .. 4-8

4.3 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Stream Flows ... 4-9

4.4 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Major Equipment ... 4-11

4.5 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Utilities Summary ... 4-14

4.6 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Total Capital Investment .. 4-19

4.7 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Capital Investment by Section .. 4-20

4.8 Ethylene from Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Production Costs ... 4-22

4.9 Ethylene From Ethanol by Adiabatic Fixed Bed Catalytic Dehydration
Comparison of Ethylene Process Economics .. 4-25

5.1 Acetic Acid from Ethanol via Acetaldehyde
Patent Summary .. A-8
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Acetic Acid by Direct Oxidation of Ethanol Patent Summary</td>
</tr>
<tr>
<td>5.3</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Design Bases and Assumptions</td>
</tr>
<tr>
<td>5.4</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Stream Flows</td>
</tr>
<tr>
<td>5.5</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Major Equipment</td>
</tr>
<tr>
<td>5.6</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Utilities Summary</td>
</tr>
<tr>
<td>5.7</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Total Capital Investment</td>
</tr>
<tr>
<td>5.8</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Capital Investment by Section</td>
</tr>
<tr>
<td>5.9</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Production Costs</td>
</tr>
<tr>
<td>5.10</td>
<td>Acetic Acid from Ethanol via Acetaldehyde Comparison of Process Economics</td>
</tr>
<tr>
<td>6.1</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol Patent Summary</td>
</tr>
<tr>
<td>6.2</td>
<td>Ethyl Acetate by Direct Conversion of Ethanol Patent Summary</td>
</tr>
<tr>
<td>6.3</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Design Bases and Assumptions</td>
</tr>
<tr>
<td>6.4</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Stream Flows</td>
</tr>
<tr>
<td>6.5</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Major Equipment</td>
</tr>
<tr>
<td>6.6</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Utilities Summary</td>
</tr>
<tr>
<td>6.7</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Total Capital Investment</td>
</tr>
<tr>
<td>6.8</td>
<td>Ethyl Acetate from Acetic Acid and Ethanol by Esterification Production Costs</td>
</tr>
<tr>
<td>Table Number</td>
<td>Table Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>6.9</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Design Bases and Assumptions</td>
</tr>
<tr>
<td>6.10</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Stream Flows</td>
</tr>
<tr>
<td>6.11</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Major Equipment</td>
</tr>
<tr>
<td>6.12</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Utilities Summary</td>
</tr>
<tr>
<td>6.13</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Total Capital Investment</td>
</tr>
<tr>
<td>6.14</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Capital Investment by Section</td>
</tr>
<tr>
<td>6.15</td>
<td>Ethyl Acetate from Ethanol by Dehydrogenation Production Costs</td>
</tr>
<tr>
<td>6.16</td>
<td>Comparison of Ethyl Acetate Process Economics</td>
</tr>
</tbody>
</table>