Abstract
Process Economics Program Report 229
REFINERY RESIDUE GASIFICATION
(June 2001)

Following an episode of intensive interest during the late 1970s and early 1980s as a means to converting coal to transportation fuels, interest in gasification appears to be gaining new impetus. A continuation of the decades long trend of increasingly heavy crude oil feedstock supply availability is resulting in increased yields of low value refinery residues such as residual fuel oil and coke while increasingly stringent environmental regulations appears to be reducing the markets for these residues. The need to convert these residues into a more marketable product while meeting increased refinery needs for hydrogen and electric power appears to be shifting commercial interest in favor of refinery residue gasification, particularly in the context of a synergistic refinery integrated gasification utility island, as opposed to large stand alone coal gasification facilities.

Recent advances in gasification technologies are facilitating the efficient application of gasification to refinery residues, which can present unique technical challenges relative to more traditional gasification feedstocks such as coal. The low cost synthesis gas intermediate produced can be applied to the economic production of hydrogen, methanol, and other chemicals. Recent advances in gas turbine combined cycle technologies are also enabling some refiners to participate in one of the fastest growing energy markets – electric power.

The focus of this report is a comparative evaluation of the economics of merchant hydrogen, electric power, and methanol production via the gasification of high sulfur residual fuel oil. The scope of this report includes a review of the latest gasification technologies in addition to a discussion of important advances in key associated technologies such as air separation and gas turbine combined cycle power generation. We discuss refinery integration synergies in addition to key advances which have not only dramatically reduced reported capital costs for these technologies but also improved performance efficiencies. The scope of the report includes an extensive review of supply and demand trends for refinery residues, as well as that for hydrogen, electric power, and methanol.
REFINERY RESIDUE GASIFICATION

by GEORGE J. APANEL

June 2001

A private report by the
PROCESS ECONOMICS PROGRAM

Menlo Park, California 94025
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOSSARY</td>
<td>xiii</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>2 SUMMARY</td>
<td>2-1</td>
</tr>
<tr>
<td>MARKETS</td>
<td>2-1</td>
</tr>
<tr>
<td>REFINERY AND GASIFICATION SYNERGIES</td>
<td>2-1</td>
</tr>
<tr>
<td>GASIFICATION UTILITY ISLAND TECHNOLOGIES</td>
<td>2-2</td>
</tr>
<tr>
<td>BASE CASE ECONOMICS</td>
<td>2-2</td>
</tr>
<tr>
<td>PROCESS SCHEME</td>
<td>2-2</td>
</tr>
<tr>
<td>PATENT SUMMARY, CITED REFERENCES, AND DESIGN & COST BASES</td>
<td>2-2</td>
</tr>
<tr>
<td>3 CONCLUSION</td>
<td>3-1</td>
</tr>
<tr>
<td>4 INDUSTRY STATUS</td>
<td>4-1</td>
</tr>
<tr>
<td>SUPPLY AND DEMAND FOR REFINERY RESIDUES</td>
<td>4-2</td>
</tr>
<tr>
<td>RFO Valuation and Market Price Trends</td>
<td>4-2</td>
</tr>
<tr>
<td>Crude Oil Quality Trends</td>
<td>4-5</td>
</tr>
<tr>
<td>RFO Demand Trends</td>
<td>4-8</td>
</tr>
<tr>
<td>Carbon Rejection Residues–Supply & Demand Trends</td>
<td>4-10</td>
</tr>
<tr>
<td>Relative Market Price Trends for Petroleum Coke and Coal</td>
<td>4-13</td>
</tr>
<tr>
<td>SUPPLY AND DEMAND FOR GASIFICATION PRODUCTS</td>
<td>4-14</td>
</tr>
<tr>
<td>Demand for Electric Power</td>
<td>4-14</td>
</tr>
<tr>
<td>Market Price Trends of Electric Power and Fossil Fuels</td>
<td>4-17</td>
</tr>
<tr>
<td>Background of U.S. Electric Utility Industry Regulation</td>
<td>4-20</td>
</tr>
<tr>
<td>Demand for Hydrogen</td>
<td>4-21</td>
</tr>
<tr>
<td>Demand for Methanol</td>
<td>4-24</td>
</tr>
<tr>
<td>TRENDS IN DISTILLATE FUEL SPECIFICATIONS</td>
<td>4-27</td>
</tr>
<tr>
<td>GASIFICATION UTILITY ISLAND–REFINERY INTEGRATION SYNERGIES</td>
<td>4-29</td>
</tr>
</tbody>
</table>
CONTENTS (Continued)

Refinery Hydrogen Sources .. 4-31
Refinery Hydrogen Consumers ... 4-31
Refinery Steam, Electric, and Power Requirements 4-34
Refinery Residue Gasification Integration Synergies 4-34
GASIFICATION VERSUS COMBUSTION FOR POWER GENERATION ... 4-40
CUMULATIVE GASIFICATION CAPACITIES AND PLANT LISTINGS ... 4-44
Gasification Capacities, Applications & Licensers 4-44
Gasification Plant Listings .. 4-48

5 GENERAL PROCESS REVIEW .. 5-1
GASIFICATION CHEMISTRY .. 5-1
GENERAL GASIFIER TYPES .. 5-2
Moving Bed Gasifiers ... 5-2
Fluid Bed Gasifiers ... 5-6
Entrained-Flow Gasifiers .. 5-9
 Pressurized Entrained Flow Gasification Commercial Milestones ... 5-10
 Texaco Gasification Design Features 5-10
 Shell Gasification Process ... 5-15
 Lurgi Multi-Purpose Gasification Process (MPG) 5-18
 Other Entrained Flow Gasification Technologies 5-21
SELECTIVE COMPARISON OF GASIFICATION TECHNOLOGIES ... 5-22
DOWNSTREAM SYNGAS AND OTHER PROCESSING REQUIREMENTS . 5-23
CO SHIFT CONVERSION ... 5-25
PSA FOR HYDROGEN PURIFICATION 5-26
METHANOL SYNTHESIS .. 5-28
ACID GAS REMOVAL ... 5-29
ELEMENTAL SULFUR RECOVERY ... 5-33
CONTENTS (Continued)

GAS TURBINE COMBINED CYCLE POWER GENERATION 5-36
OXYGEN PRODUCTION ... 5-39
Air Versus Oxygen for IGCC Power Generation 5-40
PROSPECTS FOR GASIFIER HOT GAS PROCESSING 5-40

6 MERCHANT HYDROGEN PRODUCTION VIA GASIFICATION OF REFINERY RESIDUE ... 6-1

PROCESS DESCRIPTION ... 6-1
Section 100--Gasification, Soot Removal, and Sulfur Recovery 6-1
Section 200--CO Shift and Chemical Production 6-3
Section 300--Air Separation and Gas Turbine Combined Cycle Power Production ... 6-3

PROCESS DISCUSSION ... 6-11

PROCESS ECONOMICS ... 6-11
Cost Impact of Solid Residue Feedstock .. 6-12
Basis for Cost Estimates ... 6-12
Merchant Power and Methanol Production ... 6-12

7 MERCHANT POWER PRODUCTION VIA GASIFICATION OF REFINERY RESIDUE ... 7-1

PROCESS DESCRIPTION ... 7-1
Section 100--Gasification, Soot Removal, and Sulfur Recovery 7-2
Section 200--CO Shift and Chemical Production 7-2
Section 300--Air Separation and Gas Turbine Combined Cycle Power Production ... 7-2

PROCESS DISCUSSION ... 7-9

PROCESS ECONOMICS ... 7-9
Cost Impact of Solid Residue Feedstock .. 7-9
Basis for Cost Estimates ... 7-9

8 MERCHANT METHANOL PRODUCTION VIA GASIFICATION OF REFINERY RESIDUE ... 8-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Simplified Overall Diagram for Hydrogen, Electric Power, Methanol Production</td>
<td>2-5</td>
</tr>
<tr>
<td>4.1</td>
<td>Extrapolating Blending Value of a Heavy Residue</td>
<td>4-3</td>
</tr>
<tr>
<td>4.2</td>
<td>Residual Fuel Oil Price History, 1997 to 1999</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3</td>
<td>US Crude Oil and Distillate Fuel Price History, 1990 to 2000</td>
<td>4-4</td>
</tr>
<tr>
<td>4.4</td>
<td>Trend of API Gravity and Sulfur Content for US Crudes for the Period of 1980</td>
<td>4-5</td>
</tr>
<tr>
<td>4.5</td>
<td>API Gravity Trend for Crudes Consumed in Major Consuming Regions for the</td>
<td>4-6</td>
</tr>
<tr>
<td>4.6</td>
<td>World Refined Products Demand, 1990-2010</td>
<td>4-9</td>
</tr>
<tr>
<td>4.7</td>
<td>World Fuel Oil Consumption (Excluding FSU), 1975-2020</td>
<td>4-9</td>
</tr>
<tr>
<td>4.8</td>
<td>RFO Demand in North America, Europe, and Asia-Pacific, 1990-2010</td>
<td>4-10</td>
</tr>
<tr>
<td>4.9</td>
<td>Delivered Cost of Coke and Coal to U.S. Power Plants, 1992 to 1996</td>
<td>4-14</td>
</tr>
<tr>
<td>4.10</td>
<td>Total World Electric Power Generation and Fuel Sources, 1971 to 2020</td>
<td>4-15</td>
</tr>
<tr>
<td>4.11</td>
<td>World Energy, GDP, and Population Trends, 1970 to 2015</td>
<td>4-16</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparative Electric Power Consumption Per Capita, kWh</td>
<td>4-16</td>
</tr>
<tr>
<td>4.13</td>
<td>U.S. Electric Power Consumption, 1973 to 2006</td>
<td>4-17</td>
</tr>
<tr>
<td>4.15</td>
<td>Average Retail Electricity Rates for Individual States, 1995</td>
<td>4-19</td>
</tr>
<tr>
<td>4.16</td>
<td>Percentage of U.S. Power Generation by IPPs, 1989 to 1996</td>
<td>4-20</td>
</tr>
<tr>
<td>4.17</td>
<td>U.S. Quarterly Spot Prices for Methanol, 1984-2001</td>
<td>4-27</td>
</tr>
<tr>
<td>4.18</td>
<td>Refinery Block Flow Diagram Indicating Sources and Users of Hydrogen</td>
<td>4-30</td>
</tr>
<tr>
<td>4.19</td>
<td>Integrated Gasification--Heavy Crude Refinery Scheme</td>
<td>4-35</td>
</tr>
<tr>
<td>4.20</td>
<td>Typical Crude Oil Atmospheric and Vacuum Distillation Scheme</td>
<td>4-36</td>
</tr>
<tr>
<td>4.21</td>
<td>Typical Hydrocracking Unit</td>
<td>4-37</td>
</tr>
<tr>
<td>4.22</td>
<td>Typical Delayed Coker Unit</td>
<td>4-37</td>
</tr>
<tr>
<td>4.23</td>
<td>Typical Deasphalter Unit</td>
<td>4-39</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Continued)

4.24 Typical Texaco Gasification Scheme with Gas Turbine Power Generation 4-40
4.26 Cost of Power via IGCC for Various Feedstocks, 1985 to 2010 4-41
4.27 Byproduct Solids from Coal Based CFB, FGD, and IGCC Power Plants 4-42
4.28 Byproduct Solids/Feed from Coke Based CFB, FGD, and IGCC Power Plants... 4-43
4.29 Atmospheric Emissions from Coal Based CFB, FGD, and IGCC Power Plants... 4-44
4.30 Cumulative Worldwide Gasification Capacity, 1970 to 2005 4-45
4.31 Cumulative Worldwide Gasification Capacity by Application 4-45
4.32 Gasification by Primary Feedstock ... 4-46
4.33 Gasification by Geographic Region ... 4-46
4.34 Gasification by Country .. 4-47
4.35 Gasification by Licensor .. 4-47
5.1 Lurgi Dry-Bottom Gasifier .. 5-3
5.2 Temperature Profile for Lurgi Dry-Bottom Gasifier .. 5-4
5.3 British Gas/Lurgi Slagging Gasifier ... 5-4
5.4 Lurgi Dry-Bottom Gasification System .. 5-5
5.5 High Temperature Winkler Gasifier ... 5-7
5.6 Typical Particle Size Distillation in a Fluidized Bed .. 5-7
5.7 Winkler Coal Gasification Process ... 5-8
5.8 Exxon Flexicoking Process ... 5-9
5.9 Quench Mode Texaco Gasification Process for Solid Feeds 5-11
5.10 Syngas Cooler Mode Texaco Gasification Process for High Ash Solids 5-12
5.11 Syngas Cooler Mode Texaco Gasification for Low Ash Feeds 5-13
5.12 Texaco Quench Mode Oil Gasifier with Soot Extraction System 5-14
5.13 Hybrid Texaco Heavy Oil Gasification Configuration Parallel Quench and Syngas Cooler Mode Gasifiers ... 5-15
5.14 Typical Shell Gasification Process for Liquid Feeds (SGP) 5-16
5.15 Typical Shell Gasification Process for Solid Feeds (SCGP) 5-17
ILLUSTRATIONS (Concluded)

5.16 Typical Shell Soot Ash Removal Unit (SARU) .. 5-18
5.17 Comparative Lurgi Slag Quench, Ash Quench, and Boiler Gasifier Configurations 5-19
5.18 Hybrid Lurgi MPG Gasifier with Both Quench and Boiler Configurations 5-20
5.19 Lurgi Ash Quench MPG System ... 5-21
5.20 IGCC Power Production from Petroleum Residues via Lurgi MPG 5-24
5.21 Hydrogen Production from Petroleum Residues via Lurgi MPG 5-24
5.22 Methanol Production from Petroleum Residues via Lurgi MPG 5-25
5.23 Adsorption and Regeneration Steps in a Typical PSA Unit 5-27
5.24 Generic MDEA Acid Gas Removal Process ... 5-31
5.25 Selective Rectisol Acid Gas Removal Process ... 5-32
5.26 Simplified Claus Scheme ... 5-34
5.27 Simplified Scot Process Scheme ... 5-35
5.28 Brayton Thermodynamic Cycle for Gas Turbines ... 5-37
5.29 Open and Closed Brayton Cycle Gas Turbine Configurations 5-37
5.30 Cogeneration by Combined Cycle Gas Turbine .. 5-38
6.1 Hydrogen, Electric Power, and Methanol Production via Gasification of Refinery Residue.. D-3
6.2 Hydrogen Product Value vs. Feedstock Cost with Plant Capacity as a Parameter ... 6-17
7.1 Power Product Value vs. Feedstock Cost with Plant Capacity as a Parameter ... 7-14
8.1 Methanol Product Value vs. Feedstock Cost with Plant Capacity as a Parameter ... 8-16
TABLES

2.1 Gasification of Refinery Residue
Comparative Production Costs for Merchant Hydrogen, Power and Methanol
Base Cases ... 2-4

4.1 API Gravities and Heteroatom Content of Selected Crude Oils....................... 4-7
4.2 Heteroatom Content of Kern River Crude Oil Fractions.................................... 4-8
4.3 World Refined Products Demand, 1995-2010 .. 4-8
4.4 Characteristics of Typical Refinery Residues.. 4-11
4.5 Worldwide Residue Processing Capacity ... 4-12
4.6 Worldwide Residue Processing Capacity Additions in the 1990's....................... 4-12
4.7 Coke Production Trend for U.S. Refineries, 1987 to 1996................................. 4-13
4.8 Worldwide On-Purpose Hydrogen Production, 1993 .. 4-21
4.9 Worldwide Consumption of On-Purpose Hydrogen for Captive Use, 1996 4-23
4.10 Global Methanol Capacity and Demand by Region, 1993 to 2003 4-25
4.12 Typical Refinery Unit Operations Hydrogen Requirements 4-32
4.13 Unit Loadings for Typical 200,000 B/D U.S. Gulf Coast Refinery 4-33
4.14 Estimated Liquid Product Yields for Typical U.S. Gulf Coast Refinery 4-33
4.15 Utility Requirements for Typical 200,000 B/D U.S. Gulf Coast Refinery 4-34
4.16 Top 30 Commercial Gasification Projects Sorted By Size 4-49
4.17 Ongoing Coal Based IGCC Power Projects .. 4-50
4.18 Petroleum Refinery Based Residue Gasification Power Projects 4-51
5.1 Methanol Efficiencies of Selected Gasification Processes 5-23
6.1 Merchant Hydrogen Production via Gasification of Refinery Residue
Design Bases and Assumptions ... 6-5
6.2 Merchant Hydrogen Production via Gasification of Refinery Residue
Stream Flows ... 6-6
6.3 Merchant Hydrogen Production Via Gasification of Refinery Residue
Major Equipment .. 6-10
6.4 Merchant Hydrogen Production Via Gasification of Refinery Residue
Total Capital Investment .. 6-13
TABLES (Concluded)

6.5 Merchant Hydrogen Production Via Gasification of Refinery Residue
 Capital Investment by Section .. 6-14
6.6 Merchant Hydrogen Production via Gasification of Refinery Residue
 Production Costs .. 6-15
7.1 Merchant Power Production via Gasification of Refinery Residue
 Design Bases and Assumptions .. 7-3
7.2 Merchant Power Production via Gasification of Refinery Residue
 Stream Flows .. 7-4
7.3 Merchant Power Production Via Gasification of Refinery Residue
 Major Equipment .. 7-8
7.4 Merchant Power Production Via Gasification of Refinery Residue
 Total Capital Investment .. 7-10
7.5 Merchant Power Production Via Gasification of Refinery Residue
 Capital Investment by Section .. 7-11
7.6 Merchant Power Production via Gasification of Refinery Residue
 Production Costs .. 7-12
8.1 Merchant Methanol Production via Gasification of Refinery Residue
 Design Bases and Assumptions .. 8-3
8.2 Merchant Methanol Production via Gasification of Refinery Residue
 Stream Flows .. 8-4
8.3 Merchant Methanol Production Via Gasification of Refinery Residue
 Major Equipment .. 8-9
8.4 Merchant Methanol Production Via Gasification of Refinery Residue
 Total Capital Investment .. 8-12
8.5 Merchant Methanol Production Via Gasification of Refinery Residue
 Capital Investment by Section .. 8-13
8.6 Merchant Methanol Production via Gasification of Refinery Residue
 Production Costs .. 8-14
9.1 Refinery Residue Gasification and Related Technology
 Patent Summary Table ... A-3