ABSTRACT

Polyols are polymer products with an extended carbon chain and multiple reactive functional groups. Many vegetable-based oils have structures that lend themselves well as a base for these products, leading to the production of bio-based polyols. Naturally occurring variations in composition can be dealt with using a variety of process strategies. In the United States, several different processes have been developed for converting soybean oil into polyols for flexible polyurethane foams. Urethane Soy Systems Company produces a family of polyols made by auto oxidation, also known as blown soybean oil. Cargill Industrial BioProducts has developed polyols made by ring opening oligomerization of epoxidized soybean oil. Dow Chemical Company is developing soy-based polyols that are made in four main steps from soybean oil: (1) methanolysis, (2) hydroformylation, (3) hydrogenation and (4) polymerization.

Bio-derived materials such as soy-based polyols can offer significant advantages over conventional polyols in regard to sustainability, reduction of petroleum dependence and potential lower cost. They also are often characterized by higher thermal stability and less sensitivity to hydrolysis. But an important issue for soy-based polyols is the growing biodiesel market. Growing biodiesel demand significantly drove up soybean oil prices in 2007. A question that arises is how the process economics of soy-based polyols are impacted and whether these new bio-derived materials can remain competitive with conventional polyols. In this report, PEP presents process designs and associated cost estimates for bio-based polyols made by auto oxidation, ring opening oligomerization and hydroformylation. In general, technology development is still in the semi-commercial stage with only one commercial scale facility in the United States. The general conclusions are summarized below:

- Until 2006, price increases for conventional polyols helped to stimulate interest in bio-based polyols. However, rising demand for biodiesel has driven up natural oil prices and subsequent costs of bio-based polyols. Producers back integrated to the production of natural oils will have an advantage in this environment.

- Production of soy-based polyols by auto oxidation or ring-opening oligomerization are relatively simple processes without complicated unit operations. However, production by hydroformylation is a complicated multi-step process with more demanding capital requirements.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
CONTENTS (Continued)

6 BLOWN SOYBEAN OIL ... 6-1

7 POLYOLS BY RING-OPENING OLIGOMERIZATION 7-1
CONTENTS (Concluded)

APPENDIX B: DESIGN AND COST BASES ... B-1
APPENDIX C: CITED REFERENCES ... C-1
APPENDIX D: PATENT REFERENCES BY COMPANY ... D-1
APPENDIX E: PROCESS FLOW DIAGRAM .. E-1
FIGURES

2.1 Soy-Based Polyols by Hydroformylation ... 2-5
3.1 U.S. Polyether Polyol Prices ... 3-2
3.2 Crude Vegetable Oil Prices ... 3-7
4.1 Schematic Representation of the Soy-Polyol Structure 4-3
4.2 Production of Epoxidized Oils ... 4-4
4.3 Cross Counter Continuous Epoxidation Process ... 4-5
4.4 Methanolysis Process .. 4-7
4.5 Hydroformylation Process ... 4-7
4.6 Hydrogenation Process .. 4-7
4.7 Polymerization Process .. 4-8
4.8 Gellation Reactivity of Various Polyols ... 4-9
5.1 Oilseed Processing ... 5-2
5.2 Oilseed Screw Press ... 5-5
5.3 Belt Percolation Extrator ... 5-6
5.4 Soybean Processing ... E-3
5.5 Total Fixed Capital Vs. Soybean Capacity .. 5-19
5.6 Prices Received For Us Soybeans ... 5-20
6.1 Soyol Product Specifications .. 6-2
6.2 Blown Soybean Oil ... E-7
7.1 Epoxidized Oils ... 7-1
7.2 Bioh Viscosity Vs Temperature ... 7-3
7.3 Soy-Based Polyols by Ring Opening Oligomerization E-9
7.4 Polyol Product Value Vs Epoxidized Soybean Oil Price 7-10
8.1 Four Step Process For Producing Polyols From Seed Oils 8-2
8.2 Separation and Recovery of Aldehyde From Non-Aqueous Hydroformylation 8-3
8.3 Soy-Based Polyols by Hydroformylation ... E-11
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>U.S. Soybean Oil Use For Industrial Purposes</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2</td>
<td>Capital Investment Comparison-Soy-Based Polyols</td>
<td>2-6</td>
</tr>
<tr>
<td>2.3</td>
<td>Soy-Based Polyols Manufacturing Cost Summary</td>
<td>2-8</td>
</tr>
<tr>
<td>3.1</td>
<td>2006 NAFTA Polyether Urethane Polyols Consumption</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>U.S. Soybean Oil Use For Industrial Purposes</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimated U.S. 2006 Demand For Soy-Based Polyols</td>
<td>3-3</td>
</tr>
<tr>
<td>3.4</td>
<td>U.S. Soy Based Polyol Companies</td>
<td>3-5</td>
</tr>
<tr>
<td>3.5</td>
<td>2007 U.S. Polyol Prices</td>
<td>3-6</td>
</tr>
<tr>
<td>4.1</td>
<td>Compositions of Selected Natural Oils</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2</td>
<td>Typical Expoxidized Oil Properties</td>
<td>4-4</td>
</tr>
<tr>
<td>4.3</td>
<td>Bio-Based Polyols Patent Summary</td>
<td>A-1</td>
</tr>
<tr>
<td>4.4</td>
<td>Typical Properties of Oleochemical Polyols Based on Fatty Acid Esters</td>
<td>4-8</td>
</tr>
<tr>
<td>4.5</td>
<td>Odor Properties of Hydroperoxides and Epoxides Identified in Stored Soybean Oil</td>
<td>4-10</td>
</tr>
<tr>
<td>4.6</td>
<td>Mechanical Properties of Benchmark Foam Vs 40% Soy Foam</td>
<td>4-11</td>
</tr>
<tr>
<td>5.1</td>
<td>Average Compositions for Crude and Refined Soybean Oil</td>
<td>5-8</td>
</tr>
<tr>
<td>5.2</td>
<td>Oilseed World Crushings</td>
<td>5-9</td>
</tr>
<tr>
<td>5.3</td>
<td>Canadian Oilseed Crushing Facilities</td>
<td>5-10</td>
</tr>
<tr>
<td>5.4</td>
<td>Soybean Processing Design Bases</td>
<td>5-12</td>
</tr>
<tr>
<td>5.5</td>
<td>Soybean Processing Major Equipment</td>
<td>5-13</td>
</tr>
<tr>
<td>5.6</td>
<td>Soybean Processing Utilities Summary</td>
<td>5-15</td>
</tr>
<tr>
<td>5.7</td>
<td>Approximate Soybean Composition</td>
<td>5-16</td>
</tr>
<tr>
<td>5.8</td>
<td>Soybean Processing Waste Streams</td>
<td>5-17</td>
</tr>
<tr>
<td>5.9</td>
<td>Soybean Processing Total Capital Investment</td>
<td>5-21</td>
</tr>
</tbody>
</table>
5.10 Soybean Processing
 Capital Investment by Section ... 5-22
5.11 Soybean Processing
 Production Costs ... 5-23
5.12 Soybean Processing
 Direct Costs by Section ... 5-25
6.1 Soyol Viscosity Vs Temperature .. 6-2
6.2 Blown Soybean Oil
 Design Bases .. 6-4
6.3 Blown Soybean Oil
 Stream Flows .. 6-6
6.4 Blown Soybean Oil
 Major Equipment .. 6-7
6.5 Blown Soybean Oil
 Utilities Summary ... 6-8
6.6 Soyol Properties Versus US 6,759,542 ... 6-9
6.7 Blown Soybean Oil
 Total Capital Investment ... 6-11
6.8 Blown Soybean Oil
 Production Costs ... 6-12
7.1 Properties of Palm-Based Polyols .. 7-2
7.2 BIOH™ Typical Properties ... 7-2
7.3 Soy-Based Polyols by Ring-Opening Oligomerization
 Design Bases ... 7-4
7.4 Soy-Based Polyols by Ring-Opening Oligomerization
 Stream Flows ... 7-5
7.5 Soy-Based Polyols by Ring-Opening Oligomerization
 Major Equipment .. 7-6
7.6 Soy-Based Polyols by Ring-Opening Oligomerization
 Utilities Summary .. 7-7
7.7 BIOH Properties Versus WO 2006/116456 .. 7-8
7.8 Soy-Based Polyols by Ring-Opening Oligomerization
 Total Capital Investment ... 7-11
TABLES (Concluded)

7.9 Soy-Based Polyols by Ring-Opening Oligomerization
Production Costs ... 7-12

8.1 Soy-Based Polyols by Hydroformylation
Design Bases ... 8-5

8.2 Soy-Based Polyols by Hydroformylation
Stream Flows ... 8-9

8.3 Soy-Based Polyols by Hydroformylation
Major Equipment .. 8-17

8.4 Soy-Based Polyols by Hydroformylation
Utilities Summary ... 8-21

8.5 Soy-Based Polyols by Hydroformylation
Total Capital Investment .. 8-26

8.6 Soy-Based Polyols by Hydroformylation
Capital Investment by Section ... 8-27

8.7 Soy-Based Polyols by Hydroformylation
Production Costs .. 8-29

8.8 Soy-Based Polyols by Hydroformylation
Direct Costs by Section .. 8-31