Abstract

Process Economics Report 216
ACID GAS TREATMENT AND SULFUR RECOVERY
(October 1997)

This report addresses the technology and economics of removing acid gases—H2S, CO2, COS, CS2, and mercaptans—from gaseous process streams and the subsequent conversion of H2S to S for sale or disposal. This topic is especially important now to the process industries because environmental regulations governing the atmospheric discharge of sulfurous gases are becoming increasingly stringent. In another respect, recovered S from petroleum refining and natural gas and mineral processing is now the major source of S for fertilizer production and other industrial applications. In addition to an extensive review of technological developments and process selection guidelines, the report discusses market issues concerning the world supply/demand of S and the prospects for recovered S. These data are valuable to process developers, market researchers, and plant operators.

To illustrate the process economics of acid gas removal and S recovery, we selected the following four representative new or improved process chains for treating four different sour gas streams:

- Refinery gas desulfurization by methyldiethanoamine absorption-Claus S recovery-Hydrosulffreen® tailgas treatment
- Natural gas desulfurization by Sulfinol absorption-Claus S recovery-Super SCOT tailgas treatment
- Synthesis gas desulfurization by Benfield absorption-Selectox S recovery-CBA tailgas treatment
- Natural gas desulfurization by diethanolamine absorption-LO-CAT II® direct H2S oxidation.

We selected these process chains because each has unique features that offer improved acid gas removal efficiency and/or reduction in energy consumption.

Our study findings indicate that a high flowrate sour gas stream containing small amounts of S compounds results in a high S recovery cost on an S weight basis, but a low treatment cost in terms of the sour gas volume treated. In contrast, a low flowrate sour gas stream containing high concentrations of S compounds results in a low S recovery cost on an S weight basis, but a high treatment cost in terms of the unit volume of the treated sour gas. Overall, at today’s depressed market prices for recovered S, the sales value of recovered S is unlikely to be high enough to offset the recovery cost, except perhaps for very large or fully depreciated recovery plants. The shortfall can be considered as an environmental control cost.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>Anthraquinone-disulfonic acid</td>
</tr>
<tr>
<td>BSR</td>
<td>Beavon sulfur removal</td>
</tr>
<tr>
<td>CBA</td>
<td>Cold bed adsorption</td>
</tr>
<tr>
<td>CRU</td>
<td>Claus recovery unit</td>
</tr>
<tr>
<td>DEA</td>
<td>Diethanolamine</td>
</tr>
<tr>
<td>DGA</td>
<td>Diglycolamine</td>
</tr>
<tr>
<td>DIPA</td>
<td>Diisopropanolamine</td>
</tr>
<tr>
<td>DMPEG</td>
<td>Dimethyl polyethylene glycol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>GRI</td>
<td>Gas Research Institute</td>
</tr>
<tr>
<td>G-V</td>
<td>Giammarco Vetrocoke®</td>
</tr>
<tr>
<td>HEDTA</td>
<td>Hydroethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>IFP</td>
<td>Institut Français du Pétrole</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>lt</td>
<td>Long ton = 1.016 metric tons = 2240 pounds</td>
</tr>
<tr>
<td>MCA</td>
<td>Methylcyanoacetate</td>
</tr>
<tr>
<td>MDEA</td>
<td>Methyldiethanolamine</td>
</tr>
<tr>
<td>MEA</td>
<td>Monoethanolamine</td>
</tr>
<tr>
<td>MPE</td>
<td>Methyl isopropyl ether</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methyl-pyrrolidone</td>
</tr>
<tr>
<td>NTA</td>
<td>Nitrilotriacetic acid</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene carbonate</td>
</tr>
<tr>
<td>Redox</td>
<td>Reduction-oxidation</td>
</tr>
<tr>
<td>S</td>
<td>Sulfur</td>
</tr>
<tr>
<td>SCOT</td>
<td>Shell Oil’s Claus Off-gas Treatment</td>
</tr>
<tr>
<td>SRU</td>
<td>Sulfur recovery unit</td>
</tr>
<tr>
<td>TBP</td>
<td>Tri-n-butyl phosphate</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethanolamine</td>
</tr>
<tr>
<td>TMP</td>
<td>Tri-n-butyl phosphate</td>
</tr>
<tr>
<td>USBOM</td>
<td>U.S. Bureau of Mines</td>
</tr>
</tbody>
</table>
CONTENTS

GLOSSARY .. xv

1 INTRODUCTION ... 1-1

2 SUMMARY .. 2-1
 GENERAL ASPECTS ... 2-1
 TECHNICAL ASPECTS ... 2-3

 Refinery Gas Desulfurization by the Process Chain of
 Methyldiethanolamine Absorption, Claus Sulfur Recovery,
 and Hydrosulfreen® Tailgas Treatment ... 2-5

 Natural Gas Desulfurization by the Process Chain of
 Sulfinol Absorption, Claus Sulfur Recovery,
 and SCOT Tailgas Treatment .. 2-5

 Synthesis Gas Desulfurization by the Process Chain of
 Benfield Absorption, Selectox Sulfur Recovery,
 and CBA Tailgas Treatment .. 2-6

 Natural Gas Desulfurization by the Process Chain of
 Diethanolamine Acid Gas Absorption and LO-CAT II®
 Iron Chelate Direct Hydrogen Sulfide Oxidation .. 2-6

 ECONOMIC ASPECTS .. 2-7

3 INDUSTRY STATUS ... 3-1
 INTRODUCTION ... 3-1
 WORLD SULFUR PRODUCTION .. 3-1
 ENVIRONMENTAL ISSUES .. 3-2
 MAJOR U.S. PRODUCERS OF RECOVERED SULFUR .. 3-3
 PLANT CAPACITIES ... 3-3
 MAJOR SULFUR APPLICATIONS .. 3-3
 SULFUR PRICES ... 3-3

4 REVIEW OF TECHNOLOGIES .. 4-1
 ACID GAS REMOVAL TECHNOLOGIES ... 4-1
CONTENTS (Continued)

5 REFINERY GAS DESULFURIZATION BY THE PROCESS CHAIN
 OF MDEA ABSORPTION, CLAUS SULFUR RECOVERY,
 AND HYDROSULFREEN® TAILGAS TREATMENT (Concluded)
 Stream Factor 5-5
 Plant Capacity 5-5
 PROCESS DESCRIPTION 5-5
 Absorption-Stripping Section 5-5
 Claus Sulfur Recovery Section 5-6
 Tailgas Treatment Section 5-6
 PROCESS DISCUSSION 5-17
 COST ESTIMATES 5-17
 Capital Costs 5-17
 Production Costs 5-18
 DISCUSSION OF COSTS 5-18

6 NATURAL GAS DESULFURIZATION BY THE PROCESS CHAIN
 OF SULFINOL ABSORPTION, CLAUS SULFUR RECOVERY,
 AND SUPER SCOT TAILGAS TREATMENT 6-1
 REVIEW OF PROCESSES 6-1
 Sulfinol Process 6-1
 Solution Concentration 6-1
 Chemistry 6-2
 Process Advantages 6-3
 Process Limitations 6-3
 Claus Process 6-3
 Super SCOT Process 6-3
 Chemistry 6-4
 Postconversion Treatment 6-4
 REVIEW OF DESIGN AND COST ESTIMATE BASES .. 6-4
 PROCESS DESCRIPTION 6-9
 Absorption-Regeneration Section 6-0
CONTENTS (Continued)

6 NATURAL GAS DESULFURIZATION BY THE PROCESS CHAIN OF SULFINOL ABSORPTION, CLAUS SULFUR RECOVERY, AND SUPER SCOT TAILGAS TREATMENT (Concluded)

Claus Sulfur Recovery Section ... 6-10
Super SCOT Section ... 6-11
PROCESS DISCUSSION ... 6-22
COST ESTIMATES ... 6-22
Capital Costs ... 6-22
Production Costs ... 6-23
DISCUSSION OF COSTS ... 6-24

7 SYNTHESIS GAS DESULFURIZATION BY THE PROCESS CHAIN OF BENFIELD ABSORPTION, SELECTOX SULFUR RECOVERY, AND COLD BED ABSORPTION TAILGAS TREATMENT .. 7-1

REVIEW OF PROCESSES .. 7-1
Benfield Process .. 7-1
 Chemistry ... 7-1
 Process Configurations ... 7-2
Selectox Process .. 7-4
 Chemistry ... 7-4
 Patents ... 7-4
 Process Configurations ... 7-5
CBA Process ... 7-5

REVIEW OF DESIGN AND COST ESTIMATE BASES 7-5

PROCESS DESCRIPTION .. 7-9
Absorption-Regeneration Section ... 7-9
Sulfur Recovery and Tailgas Treatment ... 7-9
PROCESS DISCUSSION .. 7-19
COST ESTIMATES ... 7-19
Capital Costs ... 7-20
Production Costs ... 7-19
ILLUSTRATIONS

2.1 World Reserves of Sulfur ... 2-2

2.2 Process Categories for Acid Gas Removal, Sulfur Recovery, and Tailgas Treatment 2-4

3.1 World Production of Sulfur, All Forms, 1995 3-1

3.2 World Production of Sulfur, All Forms, by Country, 1996 3-2

3.3 U.S. Prices for Sulfur, 1988-1997 ... 3-4

4.1 Typical Acid Gas Absorption Using Chemical Solvents 4-2

4.2 Typical Acid Gas Absorption Using Physical Solvents 4-3

4.3 Theoretical Equilibrium Conversion of Hydrogen Sulfide to Elemental Sulfur by Selective Oxidation: Effect of Temperature on Conversion ... 4-18

5.1 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Processes E-3

5.2 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Processes Effect of Plant Capacity on Investment ... 5-23

5.3 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Processes Effect of Operating Level on Product Value ... 5-24

6.1 Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes E-5

6.2 Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Effect of Plant Capacity on Investment ... 6-30

6.3 Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Effect of Operating Level on Product Value ... 6-31

7.1 Benfield Process Configurations .. 7-3

7.2 Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment E-7

7.3 Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Effect of Plant Capacity on Investment ... 7-25

7.4 Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Effect of Operating Level on Product Value ... 7-26
ILLUSTRATIONS (Concluded)

8.1 Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process .. E-9

8.2 Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process
 Effect of Plant Capacity on Investment ... 8-25

8.3 Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process
 Effect of Operating Level on Product Value .. 8-26
TABLES

2.1 Summary of Economics for Acid Gas Removal and Sulfur Recovery by Process Chains .. 2-9

4.1 Acid Gas Removal by Alkanolamine Chemical Absorption Processes 4-4

4.2 Acid Gas Removal by Caustic And Hot Carbonate Chemical Absorption Processes ... 4-8

4.3 Acid Gas Removal by Physical Solvent Absorption Processes 4-11

4.4 Low-Concentration Hydrogen Sulfide Removal Processes 4-22

4.5 Claus Plant Tailgas Treatment Processes .. 4-24

4.6 Review of Technologies Patent Summary ... A-3

5.1 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Design and Cost Estimate Bases ... 5-2

5.2 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Stream Flows ... 5-8

5.3 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Major Equipment ... 5-14

5.4 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Utilities Summary ... 5-16

5.5 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Total Capital Investment ... 5-19

5.6 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Capital Investment by Section ... 5-20

5.7 Refinery Gas Desulfurization by MDEA Absorption, Claus Sulfur Recovery, and Hydrosulfreen® Tailgas Treatment Production Costs .. 5-21

6.1 Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Design And Cost Estimate Bases ... 6-6

6.2 Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Stream Flows .. 6-11
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Major Equipment</td>
</tr>
<tr>
<td>6.4</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Utilities Summary</td>
</tr>
<tr>
<td>6.5</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Total Capital Investment</td>
</tr>
<tr>
<td>6.6</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Capital Investment By Section</td>
</tr>
<tr>
<td>6.7</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Production Costs</td>
</tr>
<tr>
<td>6.8</td>
<td>Natural Gas Desulfurization by Sulfinol Absorption, Claus Sulfur Recovery, and Super SCOT Tailgas Treatment Processes Direct Costs By Section</td>
</tr>
<tr>
<td>7.1</td>
<td>Union Oil's Hydrogen Sulfide Oxidation Process Patent Summary</td>
</tr>
<tr>
<td>7.2</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Design And Cost Estimate Bases</td>
</tr>
<tr>
<td>7.3</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Stream Flows</td>
</tr>
<tr>
<td>7.4</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Major Equipment</td>
</tr>
<tr>
<td>7.5</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Utilities Summary</td>
</tr>
<tr>
<td>7.6</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Total Capital Investment</td>
</tr>
<tr>
<td>7.7</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Capital Investment By Section</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>7.8</td>
<td>Synthesis Gas Desulfurization by the Process Chain of Benfield Absorption, Selectox Sulfur Recovery, and CBA Tailgas Treatment Production Costs</td>
</tr>
<tr>
<td>8.1</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Design and Cost Estimate Bases</td>
</tr>
<tr>
<td>8.2</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Stream Flows</td>
</tr>
<tr>
<td>8.3</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Major Equipment</td>
</tr>
<tr>
<td>8.4</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Utilities Summary</td>
</tr>
<tr>
<td>8.5</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Total Capital Investment</td>
</tr>
<tr>
<td>8.6</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Capital Investment by Section</td>
</tr>
<tr>
<td>8.7</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Production Costs</td>
</tr>
<tr>
<td>8.8</td>
<td>Natural Gas Desulfurization by DEA Absorption and the LO-CAT II® Iron Chelate Direct Oxidation Process Direct Costs by Section</td>
</tr>
</tbody>
</table>