Abstract

Process Economics Program Report 215
PETROLEUM REFINING PROFITABILITY
(November 1995)

Conversion of crude oil is expected to remain the principal source of transportation fuels well into the next century. This study presents projected profitabilities (1995-2010) of petroleum refining operations for light low-sulfur and heavy high-sulfur crude oils in the U.S. Gulf Coast, Rotterdam, and Singapore. Four crude oil price scenarios are considered. The gasoline plus distillate (G+D) product slates, estimated for the year 2000, are held constant within each region. The heavy oil refineries are therefore more complex and expensive than the corresponding light crude oil refineries.

This study identifies trends and differences between regions and crude oil types. Lower crude oil prices increase refinery profitability in all regions. The economic incentive to invest in upgrading facilities for heavy crude oils depends on the geographical location and crude oil price. In the U.S. market, it appears to be more profitable to build a higher investment complex refinery to run low-priced heavy crude oil, rather than build a less expensive refinery to run high-priced light crude oil. In Singapore, the heavy crude oil operation is preferred over the light crude oil only at low oil prices. The light crude oil becomes more attractive relative to the heavy crude oil with increasing crude oil price. In Rotterdam, the light crude oil is preferred over the heavy crude oil, but the refining net margins are insufficient to justify new refinery construction with either crude oil across the price range studied.

We also discuss primary refining technologies and trends in this report, and review the changing fuel regulations in each major region.
CONTENTS (Continued)

4 METHODOLOGY AND BASES (Concluded)

PRICES 4-6
- Crude Oil Prices 4-6
- Crude Oil Price Scenarios 4-7
- Light and Heavy Crude Oil Price Differentials 4-8
- Natural Gas and NGL Prices 4-9
- Petroleum Product Prices 4-10

PROFITABILITY CALCULATIONS 4-30
- Investment Costs 4-30
- Refinery Processing Costs 4-31

5 TRENDS IN REFINERY OPERATIONS 5-1

REFINING TRENDS 5-1

REFINING TECHNOLOGIES 5-2
- Crude Oil Distillation 5-4
- Hydrotreating 5-5
- Gas Oil Conversion 5-6
- FCC 5-6
- Hydrocracking 5-7
- Residue Upgrading 5-8
- Coking 5-9
- Thermal Cracking and Visbreaking 5-10
- Resid FCC and Resid Hydrocracking 5-10
- Octane Enhancement 5-10
- Catalytic Reforming 5-11
- C6/C8 Isomerization 5-12
- Alkylation 5-13
- Oxygenate (Ethers) Production 5-14
- Hydrogen Production 5-15

6 U.S. REFINERY PROFITABILITY 6-1

U.S. FUEL TRENDS AND REGULATIONS 6-1
- Reformulated Gasoline 6-2
- Diesel Fuel and Fuel Oil 6-3
CONTENTS (Continued)

6 U.S. REFINERY PROFITABILITY (Concluded)
 REFINERY OPERATIONS 6-3
 REFINERY CONFIGURATIONS 6-6
 Effect of Crude Oil Quality 6-6
 Impact of Product Specifications 6-8
 PROFITABILITY OF NEW U.S. REFINERIES 6-10
 Capital Costs 6-14
 Refinery Capacity Use 6-14
 Processing Costs 6-16
 Return on Investment 6-16
 Effect of Crude Oil Quality 6-17

7 WESTERN EUROPE REFINERY PROFITABILITY 7-1
 FUEL TRENDS IN WESTERN EUROPE 7-1
 Gasoline 7-2
 Diesel Fuel 7-3
 Residual Fuel Oil 7-4
 REFINERY OPERATIONS 7-4
 REFINERY CONFIGURATIONS 7-6
 Effect of Crude Oil Quality 7-7
 Impact of Product Specifications 7-8
 PROFITABILITY OF NEW WESTERN EUROPE REFINERIES 7-9
 Capital Costs 7-13
 Refinery Capacity Use 7-13
 Processing Costs 7-15
 Return on Investment 7-15
 Effect of Crude Oil Quality 7-16

8 ASIA-PACIFIC REFINERY PROFITABILITY 8-1
 FUEL TRENDS IN THE ASIA-PACIFIC REGION 8-1
 Gasoline 8-2
 Middle Distillates 8-4
 REFINERY OPERATIONS 8-5
CONTENTS (Concluded)

8 ASIA-PACIFIC REFINERY PROFITABILITY (Concluded)

REFINERY CONFIGURATIONS 8-8
 Effect of Crude Oil Quality 8-8
 Impact of Product Specifications 8-9

PROFITABILITY OF NEW ASIA-PACIFIC REFINERIES 8-11
 Capital Costs 8-15
 Refinery Capacity Use 8-15
 Processing Costs 8-17
 Return on Investment 8-17
 Effect of Crude Oil Quality 8-18

APPENDIX A: DESIGN AND COST BASES A-1
APPENDIX B: CITED REFERENCES B-1
APPENDIX C: PROCESS FLOW DIAGRAMS C-1
ILLUSTRATIONS

2.1 Refinery Capacity Use by Region: 1977-1994 2-10
2.2 U.S. Gulf Coast Refinery Profitability 2-10
2.3 Western Europe Refinery Profitability 2-11
2.4 Asia-Pacific Refinery Profitability 2-11
2.5 Refinery Profitability with Light Low-Sulfur Crude Oils in Houston, Rotterdam, and Singapore 2-12
2.6 Refinery Profitability with Heavy High-Sulfur Crude Oils in Houston, Rotterdam, and Singapore 2-12
3.1 Gasoline Demand in the United States, Western Europe, and Asia-Pacific: 1978-2010 3-2
3.2 Middle Distillate Demand in the United States, Western Europe, and Asia-Pacific: 1978-2010 3-2
3.3 Residual Fuel Oil Demand in the United States, Western Europe, and Asia-Pacific: 1978-2010 3-3
3.4 Worldwide Refinery Distillation and Total Conversion Capacities as of January 1995 3-6
3.5 Worldwide Refinery Conversion Capacity by Type as of January 1995 3-6
3.6 U.S. Petroleum Administration for Defense Districts (PADD) 3-9
3.7 United States and Canada Refinery Distillation and Total Conversion Capacities as of January 1995 3-9
3.8 United States and Canada Refinery Conversion Capacity by Type as of January 1995 3-10
4.1 Alaska North Slope Crude Oil Prices on the U.S. Gulf Coast: 1991-1994 4-12
4.3 The Oil Price is Determined by Many Variables 4-14
4.4 Factors Influencing Crude Oil Price Differentials 4-15
4.5 Annual Crude Oil Spot Prices
ILLUSTRATIONS (Continued)

4.6 Annual Crude Oil Spot Prices
Maya versus Arabian Light: 1980-1994 4-16

4.7 Annual Crude Oil Spot Prices
Brent Blend versus Arabian Light: 1980-1994 4-17

4.8 Annual Crude Oil Spot Prices
Arabian Heavy versus Arabian Light: 1977-1994 4-17

4.9 Annual Crude Oil Spot Prices
Minas versus Arabian Light: 1970-1994 4-18

4.10 Light/Heavy Crude Oil Price Differentials 4-18

4.11 Louisiana Light/Maya Crude Oil Price Differentials as a Function of Crude Oil Price: 1982-1994 4-19

4.15 Naphtha Price (Houston) versus Crude Oil Price: 1970-1994 4-21

4.16 Premium Unleaded Gasoline Price (Houston) versus Crude Oil Price: 1982-1994 4-21

4.17 Regular Unleaded Gasoline Price (Houston) versus Crude Oil Price: 1978-1994 4-22

4.18 No. 2 Fuel Oil Price (Houston) versus Crude Oil Price: 1970-1994 4-22

4.19 0.7% S Residual Fuel Oil Price (Houston) versus Crude Oil Price: 1977-1994 4-23

4.22 Regular Gasoline Price (Rotterdam) versus Crude Oil Price: 1972-1994 4-25

4.23 Gas Oil Price (Rotterdam) versus Crude Oil Price: 1972-1994 4-25
ILLUSTRATIONS (Continued)

4.24 1.0% S Residual Fuel Oil Price (Rotterdam) versus Crude Oil Price: 1972-1994 4-26
4.27 Regular Leaded Gasoline Price (Singapore) versus Crude Oil Price: 1972-1994 4-28
4.28 Jet Grade Kerosine Price (Singapore) versus Crude Oil Price: 1978-1994 4-28
4.29 Gas Oil Price (Singapore) versus Crude Oil Price: 1978-1994 4-29
4.30 0.3% S Residual Fuel Oil Price (Singapore) versus Crude Oil Price: 1978-1994 4-29
4.31 Petroleum Refinery Investment as a Function of Capacity, Gasoline and Lighter Yield, and Design Basis Crude Oil Sulfur Content 4-32
5.1 Refinery Block Flow Diagram 5-3
6.1 U.S. Fuels Refinery 192,418 BPCD Louisiana Light Crude Oil C-3
6.2 U.S. Fuels Refinery 223,992 BPCD Maya Crude Oil C-5
6.3 Average Refinery Revenue, Raw Material Cost, and Net Margin in Houston: Louisiana Light Crude Oil, 1995-2010 6-12
6.4 Average Refinery Revenue, Raw Material Cost, and Net Margin in Houston: Maya Crude Oil, 1995-2010 6-13
6.5 Refinery Capacity and Throughput: 1977-1994 6-15
6.6 U.S. Gulf Coast Refinery Profitability 6-17
7.1 Western Europe Fuels Refinery 211,834 BPCD Brent Blend Crude Oil C-7
7.2 Western Europe Fuels Refinery 187,932 BPCD Arabian Heavy Crude Oil C-9
7.3 Average Refinery Revenue, Raw Material Cost, and Net Margin in Rotterdam: Brent Blend Crude Oil, 1995-2010 7-11
ILLUSTRATIONS (Concluded)

7.4 Average Refinery Revenue, Raw Material Cost, and Net Margin in Rotterdam: Arabian Heavy Crude Oil, 1995-2010 7-12
7.5 Western Europe Refinery Capacity and Throughput: 1977-1994 7-14
7.6 Western Europe Refinery Profitability 7-16
8.1 Asia-Pacific Fuels Refinery 192,597 BPCD Minas Crude Oil C-11
8.2 Asia-Pacific Fuels Refinery 238,909 BPCD Arabian Heavy Crude Oil C-13
8.3 Average Refinery Revenue, Raw Material Cost, and Net Margin in Singapore: Minas Crude Oil, 1995-2010 8-13
8.4 Average Refinery Revenue, Raw Material Cost, and Net Margin in Singapore: Arabian Heavy Crude Oil, 1995-2010 8-14
8.5 Asia-Pacific Refinery Capacity and Throughput: 1977-1994 8-16
8.6 Asia-Pacific Refinery Profitability 8-18
TABLES

2.1 Global Distribution of Refinery Capacity 2-1
2.2 Comparison of Fuels Refinery Operations 2-3
2.3 Petroleum Product Slates in 2000 2-4
2.4 Estimated Petroleum Product Specifications in 2000 2-5
2.5 Refinery Total Capital Investment 2-6
2.6 Refinery Utility Requirements 2-7
2.7 Refinery Cash Flow Net Margins 2-8
3.1 Oil Products Demand in Major World Regions: 1994-2010 3-4
3.2 Worldwide Refinery Capacity Summary as of January 1995 3-16
3.3 United States and Canada Refinery Capacity Summary as of January 1995 3-17
3.4 United States and Canada Conversion Refinery Capacity as of January 1995 3-18
3.5 Western and Eastern Europe Conversion Refinery Capacity as of January 1995 3-23
3.6 Asia-Pacific Conversion Refinery Capacity as of January 1995 3-28
3.7 Latin America and Caribbean Conversion Refinery Capacity as of January 1995 3-31
3.8 Middle East and Africa Conversion Refinery Capacity as of January 1995 3-33
3.9 World Refinery Capacity by Region as of January 1995 3-7
3.10 World Refinery Processing Capacity as a Percent of Crude Oil Distillation Capacity as of January 1995 3-7
3.11 U.S. Refinery Capacity as of January 1995 3-8
3.12 Asia-Pacific Refinery Capacity: 1990-1995 3-12
3.13 Announced Grassroots Refinery Capacity as of January 1995 3-35
3.14 Number of Global Refinery Projects by Region as of January 1995 3-15
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Selected Crude Oils Production and Quality</td>
</tr>
<tr>
<td>4.2</td>
<td>Petroleum Product Slates in 2000</td>
</tr>
<tr>
<td>4.3</td>
<td>World Oil (Crude and NGL) Production, Trade, and Demand: 1994-2010</td>
</tr>
<tr>
<td>4.4</td>
<td>World Crude Oil Production by Quality: 1990-2010</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of Oil Markets in Major World Regions in 1993</td>
</tr>
<tr>
<td>4.6</td>
<td>Purchased Utilities Prices in 1993</td>
</tr>
<tr>
<td>4.7</td>
<td>Bases for Capital Charges Estimates</td>
</tr>
<tr>
<td>5.1</td>
<td>Yield Comparison for Arabian Light Crude Oil as a Function of Refinery Complexity</td>
</tr>
<tr>
<td>6.1</td>
<td>Assays for Louisiana Light and Maya Crude Oils</td>
</tr>
<tr>
<td>6.2</td>
<td>Comparison of U.S. Fuels Refinery Operations</td>
</tr>
<tr>
<td>6.3</td>
<td>U.S. Refinery G+D Product Slate in 2000</td>
</tr>
<tr>
<td>6.4</td>
<td>U.S. Fuels Refinery Light Hydrocarbons (C_4-) Balance Louisiana Light Crude Oil</td>
</tr>
<tr>
<td>6.5</td>
<td>U.S. Fuels Refinery Light Hydrocarbons (C_4-) Balance Maya Crude Oil</td>
</tr>
<tr>
<td>6.6</td>
<td>U.S. Fuels Refinery Hydrogen Balance</td>
</tr>
<tr>
<td>6.7</td>
<td>U.S. Fuels Refinery Gasoline Blending Louisiana Light Crude Oil</td>
</tr>
<tr>
<td>6.8</td>
<td>U.S. Fuels Refinery Gasoline Blending Maya Crude Oil</td>
</tr>
<tr>
<td>6.9</td>
<td>U.S. Fuels Refinery Utility Requirements Louisiana Light Crude Oil</td>
</tr>
<tr>
<td>6.10</td>
<td>U.S. Fuels Refinery Utility Requirements Maya Crude Oil</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.11 U.S. Fuels Refinery
Total Capital Investment
Louisiana Light Crude Oil 6-26

6.12 U.S. Fuels Refinery
Total Capital Investment
Maya Crude Oil 6-27

6.13 Estimated U.S. Petroleum Product Specifications in 2000 6-8

6.14 Gasoline Pool Components 6-10

6.15 U.S. Gulf Coast Refinery Profitability
Processing Louisiana Light Crude Oil in 1995 6-28

6.16 U.S. Gulf Coast Refinery Profitability
Processing Maya Crude Oil in 1995 6-29

6.17 Factors Influencing the Cash Flow ROI in a New U.S. Refinery 6-11

6.18 Refinery Total Capital Investment
U.S. Gulf Coast 6-14

6.19 Refinery Utility Requirements
U.S. Gulf Coast 6-16

7.1 Assays for Brent Blend and Arabian Heavy Crude Oils 7-4

7.2 Comparison of Western Europe Fuels Refinery Operations 7-5

7.3 Western Europe Refinery G+D Product Slate in 2000 7-6

7.4 Western Europe Fuels Refinery
Light Hydrocarbons (C4-) Balance
Brent Blend Crude Oil 7-18

7.5 Western Europe Fuels Refinery
Light Hydrocarbons (C4-) Balance
Arabian Heavy Crude Oil 7-19

7.6 Western Europe Fuels Refinery
Hydrogen Balance 7-20

7.7 Western Europe Fuels Refinery
Gasoline Blending
Brent Blend Crude Oil 7-21
TABLES (Continued)

7.8 Western Europe Fuels Refinery
 Gasoline Blending
 Arabian Heavy Crude Oil 7-22

7.9 Western Europe Fuels Refinery
 Utility Requirements
 Brent Blend Crude Oil 7-23

7.10 Western Europe Fuels Refinery
 Utility Requirements
 Arabian Heavy Crude Oil 7-24

7.11 Western Europe Fuels Refinery
 Total Capital Investment
 Brent Blend Crude Oil 7-25

7.12 Contemporary Western Europe Fuels Refinery
 Total Capital Investment
 Arabian Heavy Crude Oil 7-26

7.13 Estimated Western Europe Petroleum Product Specifications in 2000 7-8

7.14 Gasoline Pool Components: Rotterdam
 versus U.S. Gulf Coast Refineries 7-9

7.15 Western Europe Refinery Profitability
 Processing Brent Blend Crude Oil in 1995 7-27

7.16 Western Europe Refinery Profitability
 Processing Arabian Heavy Crude Oil in 1995 7-28

7.17 Factors Influencing the Cash Flow ROI in a New Refinery in Rotterdam 7-10

7.18 Refinery Total Capital Investment in Rotterdam 7-13

7.19 Refinery Utility Requirements in Rotterdam 7-15

8.1 Vehicle Ownership and Gasoline Demand in the Asia-Pacific 8-2

8.2 Gasoline Lead Levels in the Asia-Pacific: 1990-2000 8-3

8.3 Sulfur Specifications in the Asia-Pacific 8-5

8.4 Assays for Minas and Arabian Heavy Crude Oils 8-6

8.5 Comparison of Asia-Pacific Fuels Refinery Operations 8-7
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>Asia-Pacific Refinery G+D Product Slate in 2000</td>
<td>8-7</td>
</tr>
<tr>
<td>8.7</td>
<td>Asia-Pacific Fuels Refinery Light Hydrocarbons (C₄-) Balance Minas Crude Oil</td>
<td>8-20</td>
</tr>
<tr>
<td>8.8</td>
<td>Asia-Pacific Fuels Refinery Light Hydrocarbons (C₄-) Balance Arabian Heavy Crude Oil</td>
<td>8-21</td>
</tr>
<tr>
<td>8.9</td>
<td>Asia-Pacific Fuels Refinery Hydrogen Balance</td>
<td>8-22</td>
</tr>
<tr>
<td>8.10</td>
<td>Asia-Pacific Fuels Refinery Gasoline Blending Minas Crude Oil</td>
<td>8-23</td>
</tr>
<tr>
<td>8.11</td>
<td>Asia-Pacific Fuels Refinery Gasoline Blending Arabian Heavy Crude Oil</td>
<td>8-24</td>
</tr>
<tr>
<td>8.12</td>
<td>Asia-Pacific Fuels Refinery Utility Requirements Minas Crude Oil</td>
<td>8-25</td>
</tr>
<tr>
<td>8.13</td>
<td>Asia-Pacific Fuels Refinery Utility Requirements Arabian Heavy Crude Oil</td>
<td>8-26</td>
</tr>
<tr>
<td>8.14</td>
<td>Asia-Pacific Fuels Refinery Total Capital Investment Minas Crude Oil</td>
<td>8-27</td>
</tr>
<tr>
<td>8.15</td>
<td>Asia-Pacific Fuels Refinery Total Capital Investment Arabian Heavy Crude Oil</td>
<td>8-28</td>
</tr>
<tr>
<td>8.16</td>
<td>Estimated Asia-Pacific Petroleum Product Specifications in 2000</td>
<td>8-10</td>
</tr>
<tr>
<td>8.17</td>
<td>Gasoline Pool Components in Singapore Refineries</td>
<td>8-11</td>
</tr>
<tr>
<td>8.18</td>
<td>Asia-Pacific Refinery Profitability Processing Minas Crude Oil in 1995</td>
<td>8-29</td>
</tr>
<tr>
<td>8.19</td>
<td>Asia-Pacific Refinery Profitability Processing Arabian Heavy Crude Oil in 1995</td>
<td>8-30</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

8.20 Factors Influencing the Cash Flow ROI in a New Refinery in Singapore 8-12
8.21 Refinery Total Capital Investment in Singapore 8-15
8.22 Refinery Utility Requirements in Singapore 8-17