CONTENTS

GLOSSARY xxiii

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 TECHNICAL ASPECTS 2-1
 ECONOMIC ASPECTS 2-2

3 INDUSTRY STATUS 3-1
 TRENDS IN TRANSPORTATION FUEL DEMAND 3-3
 TRENDS IN ENVIRONMENTAL REGULATION 3-3
 Gasoline 3-7
 Kerosene 3-8
 Diesel Fuel 3-9
 Heating Oil and Residual Fuel Oil 3-9

INSTALLED CAPACITIES 3-11
 Worldwide Summary 3-12
 United States and Canada 3-14
 Europe 3-16
 Asia-Pacific 3-16
 Latin America and the Caribbean 3-17
 The Middle East and Africa 3-17

NEW HYDROTREATING CAPACITY 3-17

4 HYDROTREATING TECHNICAL REVIEW 4-1
 PROCESS CHEMISTRY 4-1
 Desulfurization 4-1
 Denitrogenation 4-1
 Deoxygenation 4-2
 Hydrogenation 4-2
 Demetalation 4-3
 Carbon Residue Reduction 4-4
 Hydrocracking 4-4
 Reaction Thermodynamics 4-4
CONTENTS (Continued)

4 HYDROTREATING TECHNICAL REVIEW (Concluded)

PROCESS VARIABLES 4-5
 Reaction Temperature 4-5
 Reaction Pressure 4-5
 Space Velocity 4-6
 Catalyst Types 4-6

HYDROTREATING CATALYSTS 4-6
 Active Metals 4-6
 Catalyst Supports 4-7
 Promoters 4-9
 Catalyst Suppliers 4-9
 Catalyst Loading/Unloading 4-13
 Catalyst Deactivation 4-15
 Catalyst Regeneration and Rejuvenation 4-16

HYDROTREATING REACTORS 4-16
 Fixed Bed Reactors 4-17
 Moving Bed Reactors 4-17
 Ebullated Bed Reactors 4-19
 Slurry Bed Reactors 4-19

PRODUCT AND HYDROGEN RECOVERY 4-21
 Gas Separation 4-21
 Recycle Gas Treatment 4-21
 Fractionation 4-23
 Makeup Hydrogen Supply 4-24

5 ROLE OF HYDROTREATING IN THE REFINERY 5-1

REFINERY OVERVIEW 5-1
 Hydroskimming Refineries 5-1
 Conversion Refineries 5-3
CONTENTS (Continued)

5 ROLE OF HYDROTREATING IN THE REFINERY (Concluded)

REFINERY HYDROTREATING APPLICATIONS 5-6
Naphtha Hydrotreating 5-8
 Catalytic Reformer Feed Treatment 5-9
 Isomerization Feed Treatment 5-9
 Cracked Naphtha Desulfurization 5-10
 Benzene Hydrogenation 5-11
 Pyrolysis Naphtha Hydrogenation 5-12
Middle Distillate Hydrotreating 5-13
 Kerosene Hydrotreating 5-13
 Diesel Hydrotreating 5-14
 Heating Oil Desulfurization 5-15
 Hydrocracking Feed Treatment 5-16
Heavy Gas Oil Hydrotreating 5-16
 FCC Feed Treatment 5-17
 Hydrocracking Feed Treatment 5-17
 Lube Oil Hydrotreating 5-17
 Indirect Resid Desulfurization 5-18
Resid Hydrotreating 5-18
 Residual Fuel Oil Desulfurization 5-19
 Coker Feed Treatment 5-20
 Hydrocracking Feed Treatment 5-20
 RFCC Feed Treatment 5-21

6 HYDROTREATING GAS OIL FOR FCC FEED 6-1

FCC PRETREATMENT BENEFITS 6-1
 FCC Performance 6-1
 FCC Feed Economics 6-2
 FCC Product Quality 6-4

PROCESS REVIEW 6-5
 Catalyst Patents 6-5
 Process Patents 6-5
 Commercial Processes 6-8
CONTENTS (Continued)

6 HYDROTREATING GAS OIL FOR FCC FEED (Concluded)

PROCESS DESCRIPTION
- Hydrotreating Reaction (Section 100) 6-10
- Gas Recovery (Section 200) 6-10
- Product Recovery (Section 300) 6-11

PROCESS DISCUSSION
- Feedstock 6-20
- Product Quality and Yield 6-20
- Process Parameters 6-20
- Reactor Conditions 6-21
- Hydrotreating Catalyst 6-21
- Hydrogen Supply 6-21
- Equipment Sizing 6-21
- Reactor 6-21
- Furnace Heaters 6-22
- Compressors 6-22
- Hydrogen Recovery 6-22
- Ammonia and Hydrogen Sulfide Removal 6-23
- Product Fractionation 6-23
- Catalyst Replacement 6-23
- Materials of Construction 6-23
- Waste Treatment 6-24
- Safety 6-25

COST ESTIMATES
- Investment Costs 6-25
- Production Costs 6-26
- Economic Analysis 6-35

7 HYDROTREATING RESIDUAL OIL FOR RESID FLUIDIZED CATALYTIC CRACKING FEED

RESID PROPERTIES 7-1
RESID HYDROTREATING 7-2
RFCC PRETREATMENT BENEFITS 7-3
CONTENTS (Continued)

7 HYDROTREATING RESIDUAL OIL FOR RESIDUAL FLUIDIZED CATALYTIC CRACKING FEED (Continued)

PROCESS REVIEW 7-6
Catalyst Patents 7-6
Process Patents 7-7
Reactor Patents 7-7
Commercial Processes 7-7

PROCESS DESCRIPTION 7-8
Hydrotreating (Section 100) 7-8
Gas Recovery (Section 200) 7-9
Product Recovery (Section 300) 7-10

PROCESS DISCUSSION 7-19
Feedstock 7-19
Product Quality and Yield 7-19
Process Parameters 7-19
Reactor Conditions 7-20
Hydrotreating Catalyst 7-20
Hydrogen Supply 7-20
Hydrogen Quench 7-21
Equipment Sizing 7-21
Reactor 7-21
Furnace Heater 7-21
Compressors 7-21
Hydrogen Recovery 7-22
Ammonia and Hydrogen Sulfide Removal 7-22
Product Fractionation 7-22
On-Stream Catalyst Replacement 7-22
Fixed Bed Catalyst Replacement 7-23
Materials of Construction 7-23
Waste Treatment 7-23
Safety 7-25
CONTENTS (Continued)

7 HYDROTREATING RESIDUAL OIL FOR RESIDUAL FLUIDIZED CATALYTIC CRACKING FEED (Concluded)

COST ESTIMATES 7-25
 Investment Costs 7-25
 Production Costs 7-25
 Economic Analysis 7-33
 Process Comparison 7-38

8 HYDRODESULFURIZATION OF DIESEL FUEL 8-1

ENVIRONMENTAL REGULATIONS 8-1
DIESEL FUEL FEEDSTOCKS 8-2
DIESEL FUEL DESULFURIZATION 8-3
 Feedstock Selection 8-3
 Reactor Temperature 8-5
 Reactor Capacity 8-5

PROCESS REVIEW 8-5
 Catalyst Patents 8-5
 Process Patents 8-5
 Commercial Processes 8-6

PROCESS DESCRIPTION 8-6
 Hydrotreating Reaction (Section 100) 8-6
 Gas Recovery (Section 200) 8-7
 Product Recovery (Section 300) 8-7

PROCESS DISCUSSION 8-16
 Feedstock 8-16
 Product Quality and Yield 8-16
 Process Parameters 8-16
 Reactor Conditions 8-16
 Hydrotreating Catalyst 8-17
 Hydrogen Supply 8-17
 Reactor Quench 8-17
CONTENTS (Continued)

8 HYDRODESULFURIZATION OF DIESEL FUEL (Concluded)

PROCESS DISCUSSION (Concluded)
 Equipment Sizing 8-17
 Reactor 8-18
 Furnace Heaters 8-18
 Compressors 8-18
 Hydrogen Recovery 8-18
 Ammonia and Hydrogen Sulfide Removal 8-18
 Product Fractionation 8-19
 Fixed Bed Catalyst Replacement 8-19
 Materials of Construction 8-19
 Waste Treatment 8-19
 Safety 8-20

COST ESTIMATES 8-20
 Investment Costs 8-21
 Production Costs 8-21
 Economic Analysis 8-29

9 SATURATION OF AROMATICS IN DIESEL FUEL 9-1

DIESEL AROMATICS TEST METHODS 9-1

ENVIRONMENTAL REGULATIONS 9-4

DIESEL FUEL FEEDSTOCKS 9-6

DIESEL FUEL AROMATICS SATURATION 9-7
 Catalyst Hydrogenation Activity 9-9
 Hydrogen Partial Pressure 9-12

PROCESS REVIEW 9-12
 Catalyst Patents 9-12
 Process Patents 9-12
 Commercial Processes 9-14

PROCESS DESCRIPTION 9-14
 Hydrotreating Reaction (Section 100) 9-14
 Gas Recovery (Section 200) 9-15
 Product Recovery (Section 300) 9-16
CONTENTS (Concluded)

9 SATURATION OF AROMATICS IN DIESEL FUEL (Concluded)

PROCESS DISCUSSION 9-25
 Feedstock 9-25
 Product Quality and Yield 9-25
 Process Parameters 9-25
 Reactor Conditions 9-25
 Hydrotreating Catalyst 9-26
 Hydrogen Supply 9-26
 Reactor Quench 9-26
 Equipment Sizing 9-27
 Reactor 9-27
 Furnace Heaters 9-27
 Compressors 9-27
 Hydrogen Recovery 9-28
 Ammonia and Hydrogen Sulfide Removal 9-28
 Product Fractionation 9-28
 Fixed Bed Catalyst Replacement 9-28
 Materials of Construction 9-28
 Waste Treatment 9-29
 Safety 9-30

COST ESTIMATES 9-30
 Investment Costs 9-30
 Production Costs 9-30
 Economic Analysis 9-38

APPENDIX A: PATENT SUMMARY TABLES A-1

APPENDIX B: DESIGN AND COST BASES B-1

APPENDIX C: CITED REFERENCES C-1

APPENDIX D: PATENT REFERENCES BY COMPANY D-1

APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

3.1 Industry Status
Growth of Worldwide Hydrotreating Capacity 3-2

3.2 Industry Status
Refinery Product Consumption: United States 3-4

3.3 Industry Status
Refinery Product Consumption: Western Europe 3-5

3.4 Industry Status
Refinery Product Consumption: Japan 3-6

3.5 Worldwide Hydrotreating Capacity
by Region And Feedstock—January 1996 3-13

3.6 U.S. Petroleum Administration for Defense (PAD) Districts 3-15

4.1 Hydrotreating Technical Review
Selectivity of Active Hydrotreating Metals 4-8

4.2 Hydrotreating Technical Review
Effect of Catalyst Shape on Reactor Pressure Drop 4-10

4.3 Hydrotreating Technical Review
Effect of Pore Size on Catalyst Activity 4-11

4.4 Hydrotreating Technical Review
On-Stream Catalyst Replacement for a Moving Bed Reactor 4-14

4.5 Hydrotreating Technical Review
Fixed Bed Reactor Designs 4-18

4.6 Hydrotreating Technical Review
Ebullated Bed Reactor Design 4-20

4.7 Hydrotreating Technical Review
General Hydrotreating Unit Flow Diagram 4-22

5.1 Hydrocracking Refinery Block Flow Diagram 5-2

5.2 Conversion Refinery Block Flow Diagram 5-5

5.3 Refinery Hydrotreating Applications 5-7

6.1 Hydrotreating Gas Oil for FCC Feed
Effect of Hydrotreating Temperature on FCC Naphtha Yield 6-3
ILLUSTRATIONS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Hydrotreating Gas Oil for FCC Feed</td>
<td>6-6</td>
</tr>
<tr>
<td></td>
<td>Effect of Feed Desulfurization on FCC Naphtha</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Hydrotreating Gas Oil for FCC Feed</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>Effect of Hydrotreating Temperature on FCC Naphtha Sulfur Content</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Hydrotreating Gas Oil for FCC Feed</td>
<td>E-3</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td>7-4</td>
</tr>
<tr>
<td></td>
<td>Effect of Feed Gravity on RFCC Gasoline Yield</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td>E-5</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td>7-35</td>
</tr>
<tr>
<td></td>
<td>Effect of Total Fixed Capital on Profitability</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td>7-40</td>
</tr>
<tr>
<td></td>
<td>Effect of Arabian Light-Arabian Heavy Price Spread on Profitability</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Hydrodesulfurization of Diesel Fuel</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td>Effect of Reactor Temperature on HDS and HDN Performance</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Hydrodesulfurization of Diesel Fuel</td>
<td>E-7</td>
</tr>
<tr>
<td></td>
<td>Process Flow Diagram</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Hydrodesulfurization of Diesel Fuel</td>
<td>8-32</td>
</tr>
<tr>
<td></td>
<td>Effect of Total Fixed Capital on Profitability</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Hydrodesulfurization of Diesel Fuel</td>
<td>8-33</td>
</tr>
<tr>
<td></td>
<td>Effect of Feed Capacity on Profitability</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Saturation of Aromatics In Diesel Fuel</td>
<td>9-3</td>
</tr>
<tr>
<td></td>
<td>Correlation Between HPLC and FIA in Measuring Total Aromatics Content</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>Correlation Between Total Aromatics Content and Cetane Number</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>Effect of Reactor Temperature on Aromatics Saturation</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td>Effect of Hydrotreating Temperature and Pressure on Total Aromatics Saturation</td>
<td></td>
</tr>
</tbody>
</table>
ILLUSTRATIONS (Concluded)

9.5 Saturation of Aromatics in Diesel Fuel
Tradeoff Between Reactor Pressure and Space Velocity on Aromatics Saturation 9-13

9.6 Saturation of Aromatics in Diesel Fuel
Process Flow Diagram E-9

9.7 Saturation of Aromatics in Diesel Fuel
Effect of Total Fixed Capital on Profitability 9-41

9.8 Saturation of Aromatics in Diesel Fuel
Effect of Feed Capacity on Profitability 9-42
TABLES

2.1 Gas Oil Hydrotreating
FCC Feedstock Production
Summary of Cost Estimates 2-4

2.2 Resid Hydrotreating
RFCC Feedstock Production
Summary of Cost Estimates 2-5

2.3 Diesel Hydrotreating
Low-Sulfur Diesel Production
Summary of Cost Estimates 2-6

2.4 Diesel Hydrotreating
Low-Aromatics Diesel Production
Summary of Cost Estimates 2-7

3.1 Worldwide Refinery Process Capacities, January 1996 3-1

3.2 Gasoline Specifications 3-8

3.3 Diesel Fuel Specifications 3-10

3.4 Fuel Oil Specifications 3-10

3.5 Worldwide Refinery Hydrotreating Capacity Summary, January 1996 3-12

3.6 Worldwide Hydrotreating Use, January 1996 3-14

3.7 United States and Canada Refinery Hydrotreating Capacity Summary, January 1996 3-16

3.8 Refinery Hydrotreating Capacity
United States and Canada, January 1996 3-18

3.9 Refinery Hydrotreating Capacity
Western Europe, January 1996 3-22

3.10 Refinery Hydrotreating Capacity
Eastern Europe/Commonwealth of Independent States, January 1996 3-25

3.11 Refinery Hydrotreating Capacity
Asia-Pacific, January 1996 3-27

3.12 Refinery Hydrotreating Capacity
Latin America and the Caribbean, January 1996 3-30

3.13 Refinery Hydrotreating Capacity
The Middle East, January 1996 3-32
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14</td>
<td>Refinery Hydrotreating Capacity</td>
<td>3-34</td>
</tr>
<tr>
<td></td>
<td>Africa, January 1996</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Planned and New Hydrotreating Construction, as of October 1995</td>
<td>3-36</td>
</tr>
<tr>
<td>4.1</td>
<td>Typical Hydrotreating Catalyst Supports</td>
<td>4-7</td>
</tr>
<tr>
<td>4.2</td>
<td>Hydrotreating Catalyst Vendors</td>
<td>4-12</td>
</tr>
<tr>
<td>4.3</td>
<td>Commercial Hydrotreating Catalyst Capacity</td>
<td>4-15</td>
</tr>
<tr>
<td>4.4</td>
<td>Hydrogen Consumption</td>
<td>4-24</td>
</tr>
<tr>
<td>4.5</td>
<td>Makeup Hydrogen Stream Compositions</td>
<td>4-25</td>
</tr>
<tr>
<td>5.1</td>
<td>Role of Hydrotreating in the Refinery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patent Summary—General</td>
<td>A-4</td>
</tr>
<tr>
<td>5.2</td>
<td>Role of Hydrotreating in the Refinery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patent Summary—Naphtha</td>
<td>A-21</td>
</tr>
<tr>
<td>5.3</td>
<td>Licensers for Naphtha Hydrotreating</td>
<td>5-9</td>
</tr>
<tr>
<td>5.4</td>
<td>Cracked Naphtha Properties</td>
<td>5-10</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of Olefin Saturation on Octane Loss</td>
<td>5-11</td>
</tr>
<tr>
<td>5.6</td>
<td>Benzene Hydrogenation Effect</td>
<td>5-12</td>
</tr>
<tr>
<td>5.7</td>
<td>Licensers for Middle Distillate Hydrotreating</td>
<td>5-13</td>
</tr>
<tr>
<td>5.8</td>
<td>Properties of Aviation Fuels</td>
<td>5-14</td>
</tr>
<tr>
<td>5.9</td>
<td>Properties of Diesel Fuels</td>
<td>5-15</td>
</tr>
<tr>
<td>5.10</td>
<td>Properties of Distillate Heating Oils</td>
<td>5-16</td>
</tr>
<tr>
<td>5.11</td>
<td>Role of Hydrotreating in the Refinery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patent Summary—Lube Oil Hydrotreating</td>
<td>A-27</td>
</tr>
<tr>
<td>5.12</td>
<td>Licensers for Heavy Gas Oil Hydrotreating</td>
<td>5-17</td>
</tr>
<tr>
<td>5.13</td>
<td>Licensers for Resid Hydrotreating</td>
<td>5-18</td>
</tr>
<tr>
<td>5.14</td>
<td>Properties of Residual Fuel Oils</td>
<td>5-19</td>
</tr>
<tr>
<td>5.15</td>
<td>Delayed Coker Yield and Quality Benefits</td>
<td>5-20</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.1 Hydrotreating Gas Oil for FCC Feed
FCC Product Yield and Quality Benefits 6-4
6.2 Hydrotreating Gas Oil for FCC Feed
Patent Summary A-29
6.3 Hydrotreating Gas Oil for FCC Feed
VGO Hydrotreating Cost Comparison 6-9
6.4 Hydrotreating Gas Oil for FCC Feed
Design Bases and Assumptions 6-12
6.5 Hydrotreating Gas Oil for FCC Feed
Feed Properties 6-13
6.6 Hydrotreating Gas Oil for FCC Feed
Reactor Feed and Effluent Compositions 6-14
6.7 Hydrotreating Gas Oil for FCC Feed
Stream Flows 6-15
6.8 Hydrotreating Gas Oil for FCC Feed
Major Equipment 6-17
6.9 Hydrotreating Gas Oil for FCC Feed
Utilities Summary 6-19
6.10 Hydrotreating Gas Oil for FCC Feed
Waste Streams 6-24
6.11 Hydrotreating Gas Oil for FCC Feed
Total Capital Investment 6-28
6.12 Hydrotreating Gas Oil for FCC Feed
Capital Investment by Section 6-29
6.13 Hydrotreating Gas Oil for FCC Feed
Production Costs 6-30
6.14 Hydrotreating Gas Oil for FCC Feed
Production Costs by Volume 6-32
6.15 Hydrotreating Gas Oil for FCC Feed
Hydroprocessing Cost Comparison 6-33
6.16 Hydrotreating Gas Oil for FCC Feed
Direct Costs by Section 6-34
Tables (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.17</td>
<td>Hydrotreating Gas Oil for FCC Feed</td>
<td>6-36</td>
</tr>
<tr>
<td></td>
<td>FCC Feed Hydrotreating Profitability</td>
<td></td>
</tr>
<tr>
<td>6.18</td>
<td>Hydrotreating Gas Oil for FCC Feed</td>
<td>6-37</td>
</tr>
<tr>
<td></td>
<td>Production Economics</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Typical Resid Properties</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2</td>
<td>Resid Conversion Process Comparison</td>
<td>7-3</td>
</tr>
<tr>
<td>7.3</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td>7-5</td>
</tr>
<tr>
<td></td>
<td>RFCC Yield Benefits</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patent Summary</td>
<td>A-32</td>
</tr>
<tr>
<td>7.5</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Bases and Assumptions</td>
<td>7-11</td>
</tr>
<tr>
<td>7.6</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feed Properties</td>
<td>7-12</td>
</tr>
<tr>
<td>7.7</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feed and Effluent Compositions for a Three-Reactor System</td>
<td>7-13</td>
</tr>
<tr>
<td>7.8</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stream Flows</td>
<td>7-14</td>
</tr>
<tr>
<td>7.9</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Equipment</td>
<td>7-16</td>
</tr>
<tr>
<td>7.10</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utilities Summary</td>
<td>7-18</td>
</tr>
<tr>
<td>7.11</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Waste Streams</td>
<td>7-24</td>
</tr>
<tr>
<td>7.12</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Capital Investment</td>
<td>7-27</td>
</tr>
<tr>
<td>7.13</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capital Investment by Section</td>
<td>7-28</td>
</tr>
<tr>
<td>7.14</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td>7-29</td>
</tr>
<tr>
<td>7.15</td>
<td>Hydrotreating Resid for RFCC Feed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Costs by Hydrotreater Feed Volume</td>
<td>7-31</td>
</tr>
</tbody>
</table>
TABLES (Continued)

7.16 Hydrotreating Resid for RFCC Feed
Direct Costs by Section 7-32

7.17 Hydrotreating Resid for RFCC Feed
RFCC Yield Benefits 7-34

7.18 Hydrotreating Resid for RFCC Feed
RFCC Feed Hydrotreating Profitability 7-36

7.19 Hydrotreating Resid for RFCC Feed
Production Economics 7-37

7.20 Hydrotreating Resid for RFCC Feed
RFCC Feed Hydrotreating Profitability
Arabian Heavy (AH) Versus Arabian Light (AL) 7-39

8.1 Typical Diesel Feedstock Properties 8-2

8.2 Hydrodesulfurization of Diesel Fuel
Patent Summary A-51

8.3 Hydrodesulfurization of Diesel Fuel
Design Bases and Assumptions 8-8

8.4 Hydrodesulfurization of Diesel Fuel
Feed Properties 8-9

8.5 Hydrodesulfurization of Diesel Fuel
Feed and Effluent Compositions for Dual Reactor System 8-10

8.6 Hydrodesulfurization of Diesel Fuel
Stream Flows 8-11

8.7 Hydrodesulfurization of Diesel Fuel
Major Equipment 8-13

8.8 Hydrodesulfurization of Diesel Fuel
Utilities Summary 8-15

8.9 Hydrodesulfurization of Diesel Fuel
Waste Streams 8-20

8.10 Hydrodesulfurization of Diesel Fuel
Total Capital Investment 8-23

8.11 Hydrodesulfurization of Diesel Fuel
Capital Investment by Section 8-24
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>Hydrodesulfurization of Diesel Fuel Production Costs</td>
<td>8-25</td>
</tr>
<tr>
<td>8.13</td>
<td>Hydrodesulfurization of Diesel Fuel Production Costs by Hydrotreater Feed Volume</td>
<td>8-27</td>
</tr>
<tr>
<td>8.14</td>
<td>Hydrodesulfurization of Diesel Fuel Direct Costs by Section</td>
<td>8-28</td>
</tr>
<tr>
<td>8.15</td>
<td>Hydrodesulfurization of Diesel Fuel Production Economics</td>
<td>8-31</td>
</tr>
<tr>
<td>9.1</td>
<td>Saturation of Aromatics in Diesel Fuel Test Methods Relating To Diesel Aromatics Content</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2</td>
<td>Typical Diesel Feedstock Properties</td>
<td>9-7</td>
</tr>
<tr>
<td>9.3</td>
<td>Typical Diesel Feedstock Aromatics Distribution</td>
<td>9-8</td>
</tr>
<tr>
<td>9.4</td>
<td>Hydrotreating Effect on Aromatics Distribution</td>
<td>9-8</td>
</tr>
<tr>
<td>9.5</td>
<td>Saturation of Aromatics in Diesel Fuel Patent Summary</td>
<td>A-55</td>
</tr>
<tr>
<td>9.6</td>
<td>Saturation of Aromatics in Diesel Fuel Design Bases and Assumptions</td>
<td>9-17</td>
</tr>
<tr>
<td>9.7</td>
<td>Saturation of Aromatics in Diesel Fuel Feed Properties</td>
<td>9-18</td>
</tr>
<tr>
<td>9.8</td>
<td>Saturation of Aromatics in Diesel Fuel Feed and Effluent Compositions for Dual Reactor System</td>
<td>9-19</td>
</tr>
<tr>
<td>9.9</td>
<td>Saturation of Aromatics in Diesel Fuel Stream Flows</td>
<td>9-20</td>
</tr>
<tr>
<td>9.10</td>
<td>Saturation of Aromatics in Diesel Fuel Major Equipment</td>
<td>9-22</td>
</tr>
<tr>
<td>9.11</td>
<td>Saturation of Aromatics in Diesel Fuel Utilities Summary</td>
<td>9-24</td>
</tr>
<tr>
<td>9.12</td>
<td>Saturation of Aromatics in Diesel Fuel Waste Streams</td>
<td>9-29</td>
</tr>
<tr>
<td>9.13</td>
<td>Saturation of Aromatics in Diesel Fuel Total Capital Investment</td>
<td>9-32</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>9.14</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-33</td>
</tr>
<tr>
<td></td>
<td>Capital Investment by Section</td>
<td></td>
</tr>
<tr>
<td>9.15</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-34</td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td></td>
</tr>
<tr>
<td>9.16</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-36</td>
</tr>
<tr>
<td></td>
<td>Production Costs by Hydrotreater Feed Volume</td>
<td></td>
</tr>
<tr>
<td>9.17</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-37</td>
</tr>
<tr>
<td></td>
<td>Direct Costs by Section</td>
<td></td>
</tr>
<tr>
<td>9.18</td>
<td>Saturation of Aromatics in Diesel Fuel</td>
<td>9-40</td>
</tr>
<tr>
<td></td>
<td>Production Economics</td>
<td></td>
</tr>
</tbody>
</table>