Worldwide, the importance of hydrotreating heavy oils is growing in order to meet the demand for low sulfur, improved quality heavy fuel oils and feedstocks for fluid catalytic cracking (FCC), resid FCC and, lately, hydrocracking and coking. Increasing production of higher sulfur and gravity crude oils, increasingly stringent sulfur and other environmental regulations and increasing global demand for transportation fuels are factors driving the growth. Furthermore, the production and refining of bitumens and other heavy alternate crude oils (syncrudes) is forecast to increase significantly in North America.

Heavy petroleum oils are characterized as boiling above about 650°F (343°C) and having relatively high specific gravity, low hydrogen-to-carbon ratios, and high carbon residue. They contain large amounts of asphaltenes, sulfur, nitrogen and metals, which increase hydrotreating difficulty. Feed properties are important in setting the process design and operating conditions.

Hydrotreating of heavy oils reacts them with hydrogen over a selective catalyst under high pressure and temperature to cleave sulfur, nitrogen and metals from the oil and to partially saturate polynuclear aromatic rings in order to reduce the carbon residue. Sulfur and nitrogen leave as H₂S and NH₃. As metals and coke accumulate on the catalyst, the reactor temperature is increased to compensate for reduced activity until the maximum operating temperature is reached.

Advances in heavy oil hydrotreating are a combination of catalyst development and reactor development. Heavy oil hydrotreating is performed in a series of reactors, each containing catalyst optimized for a different purpose. The reactors in the hydrotreating unit may be fixed bed, moving bed, ebulliated bed or a combination. A guard bed protects downstream catalyst from metals and contributes to sulfur removal.

This PEP Report provides an overview of heavy oil hydrotreating developments in chemistry, catalysts, process and hardware technology since PEP Report 214, Hydrotreating, issued in 1996. The report then develops the process economics for hydrotreating two heavy oil feedstocks: vacuum gas oil (VGO) and the heavier atmospheric residue (AR), each by a generic, conventional hydrotreating process. Additionally, the economics of hydrotreating VGO by our concept of the new IsoTherming™ type process is evaluated.
SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards. No other warranties expressed or implied are made. Because the reports are of an advisory nature, neither SRIC nor its employees will assume any liability for the special or consequential damages arising from the Client’s use of the results contained in the reports. The Client agrees to indemnify, defend, and hold SRIC, its officers, and employees harmless from any liability to any third party resulting directly or indirectly from the Client’s use of the reports or other deliverables produced by SRIC pursuant to this agreement.

For detailed marketing data and information, the reader is referred to one of the SRI Consulting programs specializing in marketing research. THE CHEMICAL ECONOMICS HANDBOOK Program covers most major chemicals and chemical products produced in the United States and the WORLD PETROCHEMICALS PROGRAM covers major hydrocarbons and their derivatives on a worldwide basis. In addition the SRIC DIRECTORY OF CHEMICAL PRODUCERS services provide detailed lists of chemical producers by company, product, and plant for the United States, Western Europe, Canada, and East Asia, South America and Mexico.
Composition and Physical Properties ... 5-13
Heating Value .. 5-15
Stability of Fuel Oils ... 5-16
HYDROTREATING CHEMISTRY .. 5-18
Reaction Pathways (Mechanisms) ... 5-19
 Hydrodesulfurization ... 5-19
 Hydrodenitrogenation ... 5-24
Asphaltene Structural Changes .. 5-26
 Unit Structure ... 5-27
 Characteristics .. 5-28
 Effects of Hydrotreating ... 5-29
 Product Stability ... 5-32
 Particles .. 5-33
Thermodynamics .. 5-34
Kinetics .. 5-34
 Hydrodesulfurization ... 5-35
 Hydrodenitrogenation ... 5-36
 Hydrodeasphalting .. 5-39
 Aromatic Hydrogenation ... 5-39
Feedstock Effects .. 5-40
Asphaltene Conversion .. 5-41
Aging Effects ... 5-41
CATALYSIS .. 5-42
Theoretical Results ... 5-43
Effect of Second Promoters ... 5-47
Catalyst Supports .. 5-48
 Pore Size Effect .. 5-49
 Oxide Incorporated Aluminas ... 5-50
 Alumina-Zirconia ... 5-50
CONTENTS (Continued)

Alumina-Silica .. 5-50
Alumina-Titania .. 5-51
Molecular Sieves .. 5-51
Other Supports .. 5-52
HDM Catalysis ... 5-53
Hydrodesulfurization .. 5-54
Hydrodenitrogenation .. 5-54
Commercial Catalysts ... 5-54
New Catalysts .. 5-56
CATALYSTS DEACTIVATION ... 5-56
Catalyst Effects .. 5-59
Initial Deactivation .. 5-60
Feedstock Effects ... 5-61
Aging .. 5-63
Life Extention .. 5-65
CATALYST REGENERATION AND METALS RECOVERY 5-65
Regeneration ... 5-66
TRICAT Regeneration Process .. 5-67
Developmental Rejuvenation Processes .. 5-67
Metals Reclamation ... 5-69

6 PROCES REVIEW ... 6-1

REACTOR TYPES ... 6-1
Fixed Bed ... 6-2
Moving Bed .. 6-3
Ebullating Bed ... 6-5
Slurry Reactors .. 6-5

HYRDROTREATING PROCESSES .. 6-8
CONTENTS (Continued)

Chevron Lummus Global RDS/VRDS ... 6-8
Hyvahl Process ... 6-10
T-Star Process ... 6-12
HYCON Process .. 6-12
UOP RCD Unionfining Process ... 6-13
Eni Slurry Technology .. 6-16
IsoTherming™ Process .. 6-16
Genoil Hydroconversion Upgrader ... 6-17
Experimental Process ... 6-17
RECYCLE H₂ PURIFICATION PROCESSES ... 6-18
Amine Treating ... 6-18
HPH℠ Technology .. 6-18
OPERATIONS .. 6-19
Catalysts .. 6-19
Catalyst Selection .. 6-20
Catalyst Loading and Unloading ... 6-20
Presulfiding .. 6-21
Yield and Selectivity ... 6-21
Operating Conditions .. 6-25
Pressure ... 6-27
Bed Temperature ... 6-30
Liquid Hourly Space Velocity .. 6-31
H₂ Ratio (Recycle Ratio) ... 6-32
H₂S Concentration .. 6-32
Optimization of Conditions ... 6-32
DESIGN CONSIDERATIONS .. 6-33
Hydrogen Consumption ... 6-33
H₂S Removal .. 6-34
Reactor Internals .. 6-35
Reactor Control (Experimental) .. 6-36
Reactor Models .. 6-36
Materials of Construction .. 6-37
Heat Integration .. 6-37
FCC FEED HYDROTREATING ... 6-37
7 VGO HYDROTREATING ECONOMICS ... 7-1
PROCESS DESCRIPTION ... 7-1
Conventional Hydrotreater ... 7-19
 Section 100 - Reaction .. 7-19
 Section 200 - Gas Recovery ... 7-19
 Section 300 - Product Recovery .. 7-19
IsoTherming™ Type Hydrotreater .. 7-20
 Section 100 - Reaction .. 7-20
 Section 200 - Gas Recovery ... 7-20
 Section 300 - Product Recovery .. 7-21
PROCESS DISCUSSION .. 7-21
Feedstock ... 7-21
 Section 100 - Reaction .. 7-21
 Section 200 - Gas Recovery ... 7-22
 Section 300 - Product Recovery .. 7-22
Hydrogen System ... 7-22
Materials of Construction ... 7-22
Waste Treatment and Disposal .. 7-22
COST ESTIMATES ... 7-23
Capital Costs .. 7-23
Production Costs ... 7-29
CONTENTS (Concluded)

Profitability ... 7-32

8 ATOMSPHERIC RESIDUE HYDROTREATING ECONOMICS ... 8-1

PROCESS DESCRIPTION ... 8-1
Section 100 - Reaction ... 8-11
Section 200 - Gas Recovery .. 8-11
Section 300 - Product Recovery .. 8-12

PROCESS DISCUSSION .. 8-12

Feedstock .. 8-12
Section 100 - Reaction ... 8-12
Section 200 - Gas Recovery .. 8-13
Section 300 - Product Recovery .. 8-13
Hydrogen System ... 8-13
Materials of Construction .. 8-13
Waste Treatment and Disposal .. 8-13

COST ESTIMATES .. 8-14

Capital Costs .. 8-14
Production Costs .. 8-17
Profitability .. 8-20

APPENDIX A: PATENT SUMMARY TABLES .. A-1

APPENDIX B: DESIGN AND COST BASES ... B-1

APPENDIX C: CITED REFERENCES ... C-1

APPENDIX D: PATENT REFERENCES BY COMPANY ... D-1

APPENDIX E: PROCESS FLOW DIAGRAMS .. E-1
FIGURES

4.1 Refinery Heavy Oil Hydrotreating Applications .. 4-2
4.2 U.S. Adjusted Sales of Residual Fuel Oil by End Use .. 4-3
4.3 U.S. Petroleum Administration for Defense Districts .. 4-5
4.4 World Demand for Residual Fuel Oil ... 4-8
4.5 Historical U.S. Fuel Oil Prices ... 4-10
4.6 European, Asian and U.S. Fuel Oil Prices ... 4-10
4.7 Price History of Molybdenum, 1997 - 2006 ... 4-19
4.8 Price History of Nickel, 1997 - 2006 ... 4-20
4.9 Price History of Colbalt, 1997 - 2006 ... 4-20
4.10 Price History of Tungsten, 2000 - 2006 .. 4-21
5.1 Typical Hydrodesulfurization Pathways of Lighter Organosulfur Compounds 5-20
5.2 Reaction Pathway for Hydrodesulfurization of 4,6 Dimethyl dibenzothiophene 5-22
5.3 Possible Reaction Pathways for HDN of Acridine, Carbazole and 9-Carbazole .. 5-24
5.4 Stoichiometric MOS₂ Model Including Two Rows of MOS₂ Units 5-44
5.5 Optimized MOS₂ Edge Surfaces ... 5-44
5.6 Sulfided CO-MO Catalyst Models Showing Cobalt Atoms at Different Locations 5-46
5.7 Typical S-Shaped Hydrotreater Deactivation Curve ... 5-58
5.8 Leach Solution Recovery Process .. 5-70
6.1 Chevron Lummus Global On-Stream Catalyst Replacement System 6-4
6.2 Chevron Lummus Global On-Stream Catalyst Replacement Reactor 6-5
6.3 Chevron Lummus Global RDS/VRDS Process .. 6-9
6.4 Shell Global Solutions Hycon Process ... 6-13
6.5 UOP RCD Unionfinishing Process .. 6-14
6.6 IsoTherming™ Process .. 6-17
7.1 Conventional Hydrotreating Vacuum Gas Oil For FCC Feed E-3
7.2 IsoTherming™ Type Hydrotreating Vacuum Gas Oil For FCC Feed E-5
8.1 Hydrotreating Atmospheric Resid For FCC Feed ... E-7
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Summary of Cost Estimates for Hydrotreating VGO and AR</td>
<td>3-5</td>
</tr>
<tr>
<td>4.1</td>
<td>World Crude Oil Supply by Region</td>
<td>4-4</td>
</tr>
<tr>
<td>4.2</td>
<td>Refinery Constraints and Modifications for Oil Sands Crude Processing</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Forecast U.S. Residual Fuel Oil Price and Consumption</td>
<td>4-9</td>
</tr>
<tr>
<td>4.4</td>
<td>ASTM Fuel Oil Grades</td>
<td>4-13</td>
</tr>
<tr>
<td>4.5</td>
<td>Analyses of Four No.4 Fuel Oils</td>
<td>4-14</td>
</tr>
<tr>
<td>4.6</td>
<td>ASTM Heavy Fuel Oil Specifications</td>
<td>4-15</td>
</tr>
<tr>
<td>4.7</td>
<td>ISO Physical Property Specifications for Marine Residual Fuel Oils</td>
<td>4-16</td>
</tr>
<tr>
<td>4.8</td>
<td>ISO Composition Specifications for Marine Residual Fuel Oils</td>
<td>4-17</td>
</tr>
<tr>
<td>4.9</td>
<td>Leading 2005 - 2006 Gasoline Specifications</td>
<td>4-18</td>
</tr>
<tr>
<td>4.10</td>
<td>Summary of Gasoline Sulfur Specifications</td>
<td>4-18</td>
</tr>
<tr>
<td>4.11</td>
<td>U.S. and European Diesel Fuel Specifications</td>
<td>4-19</td>
</tr>
<tr>
<td>4.12</td>
<td>Heavy Oil Hydrotreating Refineries - World Summary</td>
<td>4-22</td>
</tr>
<tr>
<td>4.13</td>
<td>Growth in Hydrotreating Capacity (1998 - 2007)</td>
<td>4-23</td>
</tr>
<tr>
<td>4.14</td>
<td>Summary of Heavy Oil Hydrotreating Refineries Capacities, January 1, 2007</td>
<td>4-24</td>
</tr>
<tr>
<td>4.15</td>
<td>North American Heavy Oil Hydrotreating Refineries Capacities</td>
<td>4-25</td>
</tr>
<tr>
<td>4.16</td>
<td>Capacities of World Heavy Oil Hydrotreating Refineries Outside of North America</td>
<td>4-29</td>
</tr>
<tr>
<td>4.17</td>
<td>Heavy Oil Hydrotreaters - Distribution of Capacities</td>
<td>4-37</td>
</tr>
<tr>
<td>4.18</td>
<td>Announced New Hydrotreating Construction Projects</td>
<td>4-37</td>
</tr>
<tr>
<td>5.1</td>
<td>Premium Low Sulfur Fuel Oil and Feedstock Properties</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Negative Effects of Metallic Compounds in Crude Oil</td>
<td>5-2</td>
</tr>
<tr>
<td>5.3</td>
<td>Selected Properties of Light and Heavy Vacuum Gas Oils</td>
<td>5-4</td>
</tr>
<tr>
<td>5.4</td>
<td>Typical RFCC Feedstock Properties</td>
<td>5-4</td>
</tr>
<tr>
<td>5.5</td>
<td>Properties of Three Commercial FCC Feedstocks</td>
<td>5-5</td>
</tr>
<tr>
<td>5.6</td>
<td>FCC Yield Estimate Comparison</td>
<td>5-5</td>
</tr>
<tr>
<td>5.7</td>
<td>Analysis of Typical Bitumen</td>
<td>5-6</td>
</tr>
<tr>
<td>5.8</td>
<td>Selected Properties of Canadian Oil - Sands Bitumen Oils</td>
<td>5-6</td>
</tr>
</tbody>
</table>
TABLES (Continued)

5.9 Characterization of Athabasca Bitumen Derived Gas Oil and Hydrotreated Products .. 5-7

5.10 Yields and H/C Ratios of Athabasca Bitumen Derived 811-901°F (433-483°C) Gas Oil and Hydrotreated Product .. 5-8

5.11 Aromaticity and Molecular Formulas of Athabasca Bitumen Derived 811-901°F (433-483°C) Gas Oil and 725°F (385°C) HDT Product 5-9

5.12 Cracking of Aromatic Rings .. 5-10

5.13 Characterization of Athabasca Bitumen Derived Coker Gas Oil and its Narrow Boiling Fractions ... 5-11

5.14 Characterization of Athabasca Bitumen Derived 811-901°F (433-483°C) Coker Gas Oil Cut HPLC Class Fractions ... 5-12

5.15 Heteroatom Distribution and Molecular Formulas of Athabasca Bitumen Derived 811-901°F (433-483°C) Coker Gas Oil Cut HPLC Class Fractions 5-12

5.16 Characterization of Athabasca Bitumen .. 5-13

5.17 SARA Analysis of Selected No.6 Fuel Oils .. 5-13

5.18 Compositions of a No.2 and a No.6 Fuel Oil ... 5-13

5.19 Metals Content of One No. 6 Fuel Oil ... 5-14

5.20 Physical Properties of Selected No. 6 Fuels Oils .. 5-15

5.21 Comparison of Heating Values of Heavy and Light Fuel Oils 5-15

5.22 Relationship of Gravity, Hydrogen Content and Heating Value of Fuel Oil 5-16

5.23 Interactive and Competitive Effects in Commercial Hydrotreating 5-16

5.24 Reaction Temperature Effect on the Liquid Product Quality in HDS and HDM of Kuwait Atmospheric Residue ... 5-23

5.25 Characterization of Asphaltenes from Vacuum Residue from Selected Crude Oils .. 5-28

5.26 Effect of Hydrotreating Temperature and HDM and HDS on Asphaltenes in Atmospheric Residues ... 5-30

5.27 Selected Properties of Asphaltenes from Arabian Heavy Atmospheric Residue.. 5-31

5.28 Selected Properties of Asphaltenes and Oil Product from Kuwait Atmospheric Residue .. 5-31

5.29 Relative Activities of Transition Metal Sulfides in the HDS of Dibenzothiophene. 5-35
TABLES (Continued)

5.30 Values of Apparent Rate Constants for Conversion of Nitrogen Compounds in Heavy Bitumen Gas Oil ... 5-39
5.31 Rate Constants for Mixture Relative to Those for Single Components........ 5-42
5.32 Heavy Oil Hydrotreating Catalyst Vendors... 5-55
5.33 Commercial Catalyst Shape Characteristics.. 5-56
5.34 Origin and Consequences of Impurities in Heavy Oils and Their Effects on Hydrotreating Catalysts ... 5-57
5.35 Properties of Fresh and Spent Hydrotreating Catalyst (Pilot Plant).............. 5-60
5.36 Concentration and Relative Reactivity of Model Compounds and Residues..... 5-60
6.1 Comparison of Different Hydrotreater Reactor Types...................................... 6-2
6.2 Upflow Compared to Downflow Fixed Bed Reactors 6-3
6.3 Example of Product Yields and Quality for Processing in Different Types of Reactors ... 6-6
6.4 Reactor Type and Catalyst Systems as a function of Feedstock Metals Content 6-7
6.5 Yields from RDS Hydrotreating Atmospheric Residue from Arabian Heavy Crude Oil... 6-10
6.6 Product Properties from RDS Hydrotreating of Atmospheric Residue from Arabian Heavy Crude Oil ... 6-10
6.7 Properties of Hyvahl Process Catalyst for Residue Hydrotreating............... 6-11
6.8 Performance of Hyvahl Process for Residues Hydrotreating.......................... 6-12
6.9 Yields from Hydrotreating a Middle Eastern Blend Reduced Crude Oil 6-15
6.10 Product Properties from Hydrotreated Middle Eastern Blend Reduced Crude Oil .. 6-15
6.11 Limitations of H₂ Purification Processes as Applied to Recycle H₂ Purification.... 6-18
6.12 Yields and Sulfur Content of Hydrocracked Arabian Light and Arabian Heavy Atmospheric and Vacuum Residue... 6-22
6.13 Yields of Two Hydrocracked and Mild Hydrocracked Vacuum Gas Oils......... 6-22
6.14 Product Properties from Hydrocracking of Two Vacuum Gas Oils.................. 6-24
6.15 Yields and Properties for Desulfurization of Kuwait Crude Oil Atmospheric Residuum ... 6-25
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.16</td>
<td>Typical Operating Conditions and Performance Results</td>
<td>6-26</td>
</tr>
<tr>
<td>6.17</td>
<td>Effects of HDT WABT Temperature and Pressure on Product Hydrocarbon Type</td>
<td>6-27</td>
</tr>
<tr>
<td>6.18</td>
<td>Effect of Temperature and Pressure on Hydrotreating of Athabasca Bitumen Gas Oil</td>
<td>6-28</td>
</tr>
<tr>
<td>6.19</td>
<td>Effect of Temperature and Pressure on Products of Hydrotreating of Athabasca Bitumen Gas Oil</td>
<td>6-29</td>
</tr>
<tr>
<td>6.20</td>
<td>Effect of LHSV on Hydrotreating of Athabasca Bitumen Gas Oil</td>
<td>6-31</td>
</tr>
<tr>
<td>6.21</td>
<td>Hydrogen Consumption During Hydrotreating of Various Feedstocks</td>
<td>6-33</td>
</tr>
<tr>
<td>6.22</td>
<td>Additional Hydrogen Consumption Caused by Metal During Hydrodesulfurization</td>
<td>6-34</td>
</tr>
<tr>
<td>6.23</td>
<td>Additional Hydrogen Consumption Caused by Nitrogen During Hydrodesulfurization</td>
<td>6-34</td>
</tr>
<tr>
<td>6.24</td>
<td>Properties of Straight Run and Hydrotreated Residues and RFCC Yields</td>
<td>6-39</td>
</tr>
<tr>
<td>6.25</td>
<td>Effect of Hydrotreating Severity on FCC Feed Properties</td>
<td>6-40</td>
</tr>
<tr>
<td>6.26</td>
<td>Effect of Hydrotreating Severity on FCC Unit Performance</td>
<td>6-41</td>
</tr>
<tr>
<td>7.1</td>
<td>Design Bases and Assumptions - Conventional Hydrotreater</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2</td>
<td>Design Bases and Assumptions - IsoTherming™ Hydrotreater</td>
<td>7-3</td>
</tr>
<tr>
<td>7.3</td>
<td>Feedstock and Product Characterizations</td>
<td>7-4</td>
</tr>
<tr>
<td>7.4</td>
<td>Vacuum Gas Oil Conventional Hydrotreating Stream Flow</td>
<td>7-5</td>
</tr>
<tr>
<td>7.5</td>
<td>Vacuum Gas Oil IsoTherming™ Type Hydrotreating Stream Flow</td>
<td>7-9</td>
</tr>
<tr>
<td>7.6</td>
<td>Vacuum Gas Oil Conventional Hydrotreating 30,000 BPSD Major Equipment</td>
<td>7-13</td>
</tr>
<tr>
<td>7.7</td>
<td>Vacuum Gas Oil IsoTherming™ Type Hydrotreating 30,000 BPSD Major Equipment</td>
<td>7-15</td>
</tr>
<tr>
<td>7.8</td>
<td>Vacuum Gas Oil Conventional Hydrotreating 30,000 BPSD Utilities Summary</td>
<td>7-17</td>
</tr>
<tr>
<td>7.9</td>
<td>Vacuum Gas Oil IsoTherming™ Type Hydrotreating 30,000 BPSD Utilities Summary</td>
<td>7-18</td>
</tr>
</tbody>
</table>

© SRI Consulting
PEP Report 214A
TABLES (Concluded)

7.10 Vacuum Gas Oil Conventional Hydrotreating 30,000 BPSD
Total Capital Investment ... 7-24

7.11 Vacuum Gas Oil Conventional Hydrotreating 30,000 BPSD
Capital Investment by Section ... 7-25

7.12 Vacuum Gas Oil IsoTherming™ Type Hydrotreating 30,000 BPSD
Total Capital Investment ... 7-27

7.13 Vacuum Gas Oil IsoTherming™ Type Hydrotreating 30,000 BPSD
Capital Investment by Section ... 7-28

7.14 Vacuum Gas Oil Conventional Hydrotreating 30,000 BPSD
Production Costs ... 7-30

7.15 Vacuum Gas Oil IsoTherming™ Type Hydrotreating 30,000 BPSD
Production Costs ... 7-33

8.1 Design Bases and Assumptions - Atmospheric Residue Hydrotreater 8-2

8.2 Feedstock and Product Characterizations .. 8-3

8.3 Atmospheric Residue Oil Hydrotreating Stream Flow 8-4

8.4 Atmospheric Residue Conventional Hydrotreating 30,000 BPSD
Major Equipment .. 8-8

8.5 Atmospheric Residue Conventional Hydrotreating 30,000 BPSD
Utilities Summary .. 8-10

8.6 Atmospheric Residue Conventional Hydrotreating 30,000 BPSD
Total Capital Investment ... 8-15

8.7 Atmospheric Residue Conventional Hydrotreating 30,000 BPSD
Capital Investment by Section ... 8-16

8.8 Atmospheric Residue Conventional Hydrotreating 30,000 BPSD
Production Costs ... 8-18

8.9 Sensitivity of ROI to Feedstock Costs .. 8-20

A.1 Heavy Oil Hydrotreating Catalysts Patent Summary A-3

A.2 Heavy Oil Hydrotreating Processes Patent Summary A-9