Abstract
Process Economics Program Report No. 212
OPTIONS FOR REFINERY HYDROGEN
(February 1994)

The need for hydrogen in petroleum refineries worldwide is growing as demand increases for lighter and cleaner fuel products. This report describes developments affecting the refinery hydrogen balance in the United States, Western Europe, and the Asia-Pacific region, and the potential for future hydrogen deficits. We discuss the basic options available for increasing hydrogen availability. Hydrogen recovery processes to upgrade refinery offgas streams to 90%+ purity are almost always more economical than on-purpose hydrogen production. We provide a detailed review of commercial hydrogen recovery processes (pressure swing adsorption-PSA, membranes, and cryogenics), whose capacity is expected to increase dramatically.

Hydrogen is produced in refineries by hydrocarbon steam reforming and noncatalytic partial oxidation. The steam reforming process is the industry’s most widely used technology and is expected to remain so at least through the 1990s. In this report, we describe the technology and economics of both processes. Costs are estimated for steam reforming using natural gas feedstock with flexibility to process propane and butane, and for noncatalytic partial oxidation using coker offgas feedstock. Results show the two processes are competitive-the optimal solution for refinery hydrogen depends on each refinery’s unique configuration, feedstock availability, and local requirements.

We also discuss the sources and uses of refinery hydrogen, and provide a detailed listing of worldwide hydrogen producing (on-purpose and by-product) and consuming units in refineries. Announced new hydrogen capacity is also listed. This information will be useful for refiners, hydrogen suppliers, and petrochemical producers with excess hydrogen in identifying future needs and opportunities.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 HYDROGEN PRODUCTION AND CONSUMPTION 2-1
 Hydrogen Production 2-1
 Hydrogen Consumption 2-2
 DEVELOPMENTS AFFECTING THE REFINERY HYDROGEN BALANCE 2-2
 HYDROGEN MANAGEMENT OPTIONS 2-4
 HYDROGEN RECOVERY PROCESSES 2-5
 HYDROGEN PRODUCTION TECHNOLOGY 2-7
 Technical Aspects 2-7
 Steam Reforming 2-7
 Noncatalytic Partial Oxidation 2-7
 Economic Aspects 2-8

3 REFINERY HYDROGEN PRODUCTION, CONSUMPTION, AND INDUSTRY STATUS 3-1
 HYDROGEN PRODUCTION AND CONSUMPTION 3-1
 Hydrogen Producers 3-1
 Catalytic Reforming 3-1
 On-Purpose Hydrogen Production 3-5
 Fluidized Catalytic Cracking (FCC) 3-5
 Thermal Processes 3-6
 Other Processes 3-6
 Hydrogen Consumers 3-6
 Feed and Product Hydroprocessing 3-6
 Other Hydrogen Consumers 3-8
 INDUSTRY STATUS 3-9
 World Summary 3-10
 United States and Canada 3-11
 Europe 3-11
 Asia-Pacific 3-17
 The Middle East, Africa, and India 3-17
 Latin America and the Caribbean 3-17
 ANNOUNCED NEW HYDROGEN CAPACITY 3-17
CONTENTS (Continued)

4 DEVELOPMENTS AFFECTING THE REFINERY HYDROGEN BALANCE 4-1
THE HYDROGEN BALANCE IN REFINERIES 4-1
 Simple versus Conversion Refinery 4-1
 Regional Product Requirements and Refining Configuration 4-3
TRENDS IN CRUDE OIL PROPERTIES 4-4
TRENDS IN REFINERY PRODUCTS 4-6
 United States 4-6
 Reformulated Gasoline 4-7
 U.S. Diesel 4-9
 Impact of Environmental Rules on U.S. Refinery Hydrogen Needs 4-10
 Western Europe 4-13
 Western Europe Middle Distillate 4-13
 Western Europe Gasoline 4-13
 Asia-Pacific Region 4-14
 Asia-Pacific Middle Distillate 4-15
 Asia-Pacific Gasoline 4-16
HYDROGEN MANAGEMENT OPTIONS AND STRATEGIES 4-16
 Catalytic Reformer Severity Optimization 4-17
 Hydrogen from Industrial Gas Suppliers 4-17
 Bulk Hydrogen Supply 4-18
 Pipeline Supply 4-18
 Across-the-Fence Supply 4-19
 Hydrogen Recovery Processes 4-19
 On-Purpose Hydrogen Technology 4-20

5 HYDROGEN PRODUCTION AND RECOVERY—GENERAL PROCESS CONSIDERATIONS 5-1
FEEDSTOCKS 5-1
 Hydrocarbon Steam Reforming 5-1
 Noncatalytic Partial Oxidation 5-2
CHEMISTRY 5-2
 Steam Reforming Chemistry 5-3
 Carbon Formation 5-4
 Effect of Operating Variables on Equilibria 5-5
 Steam Reforming Catalysts 5-8
 CO Shift Catalysts 5-11
5 HYDROGEN PRODUCTION AND RECOVERY—
GENERAL PROCESS CONSIDERATIONS (Concluded)

CHEMISTRY (Concluded)
 Noncatalytic Partial Oxidation 5-11
 Sulfur-Tolerant Shift Catalysts 5-12

HYDROGEN PURIFICATION AND RECOVERY 5-13
 Pressure Swing Adsorption 5-14
 Feed Composition 5-18
 Hydrogen Purity 5-18
 Reliability 5-18
 By-product Recovery 5-18
 Economy of Scale 5-19
 Commercial Applications 5-19
 Membranes 5-19
 Feed Composition 5-20
 Hydrogen Purity 5-22
 Reliability 5-22
 Economy of Scale 5-22
 Commercial Applications 5-22
 Cryogenic Separation 5-24
 Feed Composition 5-25
 Hydrogen Purity 5-25
 Reliability 5-27
 By-product Recovery 5-27
 Economy of Scale 5-27
 Commercial Applications 5-27
 Hydrogen Recovery Methods for Specific Applications 5-27
 CatalyticReformerOffgas 5-28
 SteamReformer 5-28
 HydroprocessingUnitPurgeGases 5-28
 HydroprocessingUnitMakeupGas 5-29
 FCCOffgas 5-29
 TDA Purge Gas 5-30
 EthyleneCrackerOffgas 5-30
 Combinations of Upgrading Processes 5-30
 Case Studies 5-31
CONTENTS (Continued)

6 HYDROGEN BY CATALYTIC STEAM REFORMING OF HYDROCARBONS 6-1

PROCESS REVIEW 6-1
Feed Pretreatment 6-6
Reforming 6-7
 Operating Conditions 6-7
 Reformer Design 6-8
 Radiant Section 6-8
 Convection Section 6-13
Steam Balance 6-13
Prereforming 6-14
Postreforming 6-15
Secondary Reforming 6-17
Feed Gas Saturation 6-17
Mechanical Considerations 6-17
CO Shift Conversion 6-18
Hydrogen Purification 6-19

PROCESS DESCRIPTION 6-20

PROCESS DISCUSSION 6-27
Reforming Section 6-27
Shift Section 6-28
Hydrogen Purification Section 6-28
Waste Treatment and NO\textsubscript{x} Reduction 6-28
 NO\textsubscript{x} 6-28
 Reformer Catalyst 6-29

COST ESTIMATES 6-29
Investment Costs 6-30
Production Costs 6-30
 Raw Materials Costs 6-30
 Utilities Costs 6-30
 Other Costs 6-31
Hydrogen Product Value 6-31
7 HYDROGEN BY NONCATALYTIC PARTIAL OXIDATION OF REFINERY OFFGAS

PROCESS REVIEW

HyTEX Gasification
Feedstocks
Gasification
Oxygen Supply
CO Shift Conversion
Acid Gas Removal
Hydrogen Purification

PROCESS DESCRIPTION

PROCESS DISCUSSION

Gasification Section
Shift Section
Acid Gas Recovery (AGR)
Hydrogen Purification Section
Waste Treatment

COST ESTIMATES

Investment Costs
Production Costs
Raw Materials Costs
Utilities Costs
Other Costs
Hydrogen Product Value

APPENDIX A: DESIGN AND COST BASES

APPENDIX B: CITED REFERENCES

APPENDIX C: PATENT REFERENCES BY COMPANY

APPENDIX D: PROCESS FLOW DIAGRAMS
ILLUSTRATIONS

3.1 Refinery Block Flow Diagram Showing Major Hydrogen-Containing Streams 3-2
3.2 UOP Platforming® Unit Hydrogen Production 3-4
3.3 Regional Comparison of World Refinery Hydrogen Capacity January 1993 3-12
3.4 Refinery Hydrogen Versus Hydroprocessing Capacity, January 1993 3-13
3.5 World Refinery Hydrogen Capacity by Type, January 1993 3-14
3.6 U.S. Petroleum Administration for Defense (PAD) Districts 3-15
3.7 Refinery Hydrogen Capacity in the United States and Canada January 1993 3-16
4.1 Hydrogen Content of Refinery Streams 4-2
5.1 Effect of Temperature on the Reaction Equilibrium Constants in Steam Methane Reforming Reactions 5-6
5.2 Equilibrium Concentration of Methane as a Function of Temperature, Pressure, and Steam Ratio for Methane in a Steam Methane Reformer 5-7
5.3 Pressure Swing Adsorption Hydrogen Recovery Steps 5-17
5.4 Example of Membrane Hydrogen Recovery Using Radial Crossflow Separation 5-21
5.5 Membrane Hydrogen Recovery Systems Typical Purity Versus Recovery for Refinery Applications 5-23
5.6 Cryogenic Hydrogen Recovery from Refinery Offgas 5-26
6.1 Side-Fired Steam Reformer 6-10
6.2 Top-Fired Steam Reformer 6-11
6.3 Terrace-Wall Design Steam Reformer 6-12
6.4 Postreformer Designs 6-16
ILLUSTRATIONS (Concluded)

6.5 Hydrogen Production by Catalytic Steam Reforming of Natural Gas Process Flow Diagram D-3
6.6 Natural Gas Prices, U.S. Gulf Coast (Utility Delivered) 6-37
6.7 Hydrogen Production by Steam Reforming of Natural Gas Product Value Versus Plant Capacity 6-38
6.8 Hydrogen Production by Steam Reforming of Natural Gas Product Value Versus Natural Gas Price 6-39
6.9 Propane and n-Butane Prices, U.S. Gulf Coast 6-40
7.1 Texaco Gasifier Vessel Schematic 7-4
7.3 Hydrogen by Noncatalytic Partial Oxidation of Coker Offgas Product Value Versus Plant Capacity 7-23
7.4 Hydrogen by Noncatalytic Partial Oxidation of Coker Offgas Product Value Versus Feedstock Value 7-24
7.5 Comparison of Hydrogen Product Value Steam Reforming Versus Noncatalytic Partial Oxidation 7-25
TABLES

2.1 Comparison of Hydrogen Recovery Processes 2-6
2.2 Summary of Cost Estimates for Hydrogen Production 2-9
3.1 Projected Hydrogen Production from U.S. Catalytic Reforming Units 3-3
3.2 Typical Refinery Hydrogen Consumption Data 3-8
3.3 Worldwide Refinery Installed Capacity Summary, January 1993 3-19
3.4 U.S. and Canadian Refinery Installed Capacity Summary, January 1993 3-19
3.5 Installed Refinery Capacity United States and Canada, January 1993 3-20
3.6 Installed Refinery Capacity Europe, January 1993 3-25
3.7 Installed Refinery Capacity Asia-Pacific, January 1993 3-28
3.8 Installed Refinery Capacity Middle East, India, and Africa, January 1993 3-30
3.9 Installed Refinery Capacity Latin America and the Caribbean, January 1993 3-32
3.10 Announced Hydrogen Capacity in U.S. and Canadian Refineries 3-34
3.11 Announced Hydrogen Capacity in European Refineries 3-35
3.12 Announced Hydrogen Capacity in Asia-Pacific Refineries 3-36
3.13 Announced Hydrogen Capacity in Middle Eastern/Indian Refineries 3-37
3.14 Announced Hydrogen Capacity in Latin American Refineries 3-37
4.1 Estimated Refinery Hydrogen Balance in Texas and California, January 1993 and January 1995 4-12
5.1 Hydrogen Production and Recovery: General Process Considerations Patent Summary 5-9
5.2 Typical Refinery Process Unit Offgas Compositions (Nominal C2) 5-14
6.1 Hydrogen by Catalytic Steam Reforming of Hydrocarbons Patent Summary 6-2
TABLES (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Process Licensors for the Catalytic Steam Reforming of Hydrocarbons</td>
<td>6-6</td>
</tr>
<tr>
<td>6.3</td>
<td>Composition of Natural Gas, Propane, and Butane Design Feedstocks</td>
<td>6-21</td>
</tr>
<tr>
<td>6.4</td>
<td>Steam Reformer Operating Conditions Natural Gas Feedstock</td>
<td>6-21</td>
</tr>
<tr>
<td>6.5</td>
<td>Hydrogen from Steam Reforming of Natural Gas Stream Flows</td>
<td>6-24</td>
</tr>
<tr>
<td>6.6</td>
<td>Hydrogen from Steam Reforming of Natural Gas Major Equipment</td>
<td>6-25</td>
</tr>
<tr>
<td>6.7</td>
<td>Hydrogen from Steam Reforming of Natural Gas Utilities Summary</td>
<td>6-26</td>
</tr>
<tr>
<td>6.8</td>
<td>Hydrogen from Steam Reforming of Natural Gas Total Capital Investment</td>
<td>6-33</td>
</tr>
<tr>
<td>6.9</td>
<td>Hydrogen from Steam Reforming of Natural Gas Capital Investment by Section</td>
<td>6-34</td>
</tr>
<tr>
<td>6.10</td>
<td>Hydrogen from Steam Reforming of Natural Gas Production Costs</td>
<td>6-35</td>
</tr>
<tr>
<td>7.1</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas Texaco HyTEX™ Process Design Bases</td>
<td>7-8</td>
</tr>
<tr>
<td>7.2</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas Texaco HyTEX™ Process Stream Flows</td>
<td>7-10</td>
</tr>
<tr>
<td>7.3</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas Texaco HyTEX™ Process Major Equipment</td>
<td>7-12</td>
</tr>
<tr>
<td>7.4</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas Texaco HyTEX™ Process Utilities Summary</td>
<td>7-13</td>
</tr>
<tr>
<td>7.5</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas Texaco HyTEX™ Process Total Capital Investment</td>
<td>7-19</td>
</tr>
</tbody>
</table>
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texaco HyTEX™ Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capital Investment by Section</td>
<td>7-20</td>
</tr>
<tr>
<td>7.7</td>
<td>Hydrogen from the Partial Oxidation of Coker Offgas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texaco HyTEX™ Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production Costs</td>
<td>7-21</td>
</tr>
</tbody>
</table>