Abstract
Process Economics Program Report No. 210
HETEROCYCLIC NITROGEN COMPOUNDS
(January 1993)

This report contains preliminary process designs and cost estimates for the production of four heterocyclic nitrogen compounds: pyridine, 3-picoline, 2-picoline, and cyanuric acid. Pyridine and 3-picoline are coproduced by reacting acetaldehyde, formaldehyde, and ammonia in the vapor phase over a silica-alumina catalyst. 2-Picoline is manufactured from acrylonitrile and acetone in a separate process section. Cyanuric acid is produced by the pyrolysis of urea. The report also discusses the industry status for each of the products, and the basic chemistry of the manufacturing processes.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 PYRIDINE AND 3-PICOLINE 2-1
 2-PICOLINE 2-2
 CYANURIC ACID 2-2

3 INDUSTRY STATUS 3-1
 PYRIDINE BASES 3-1
 PRODUCERS OF PYRIDINE BASES 3-3
 MARKETS FOR PYRIDINE BASES 3-5
 Pyridine 3-5
 2-Picoline 3-5
 3-Picoline 3-5
 4-Picoline 3-5
 CYANURIC ACID 3-6
 CYANURIC ACID MARKETS 3-6

4 CHEMISTRY 4-1
 PYRIDINE AND 3-PICOLINE 4-1
 2-PICOLINE FROM ACRYLONITRILE AND ACETONE 4-2
 Preparation of 5-OHN 4-2
 Preparation of 2-Picoline 4-4
 CYANURIC ACID 4-4

5 PYRIDINE AND 3-PICOLINE 5-1
 REVIEW OF PROCESSES 5-1
 PROCESS DESCRIPTION 5-3
CONTENTS (Continued)

5 PYRIDINE AND 3-PICOLINE (Concluded)

PROCESS DISCUSSION
Catalyst
Product Composition
Product Recovery
Product Purification
Pyridine
Picolines
Mixed Lutidines
Waste Treatment
Materials of Construction
COST ESTIMATES

6 2-PICOLINE FROM ACRYLONITRILE AND ACETONE

PROCESS DESCRIPTION
5-OHN Preparation
Dehydrocyclization
PROCESS DISCUSSION
Preparation of 5-OHN
Preparation of 2-Picoline
Batch versus Continuous
Product Storage
Materials of Construction
Waste Streams
COST ESTIMATES

7 CYANURIC ACID BY PYROLYSIS OF UREA

REVIEW OF PROCESSES
PROCESS DESCRIPTION
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Pyridine and 3-picoline from acetaldehyde, formaldehyde, and ammonia process flow diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>6.1</td>
<td>2-picoline from acrylonitrile and acetone process flow diagram</td>
<td>E-7</td>
</tr>
<tr>
<td>6.2</td>
<td>Effect of acrylonitrile and acetone costs and capital investment on 2-picoline product value</td>
<td>6-17</td>
</tr>
<tr>
<td>7.1</td>
<td>Cyanuric acid by pyrolysis of urea process flow diagram</td>
<td>E-11</td>
</tr>
</tbody>
</table>
TABLES

2.1 PYRIDINE AND 3-PICOLINE, 2-PICOLINE, AND CYANURIC ACID ESTIMATED PRODUCTION COSTS 2-4

3.1 PRINCIPAL PRODUCTS FROM REACTION OF ALDEHYDES AND KETONES WITH AMMONIA 3-1

3.2 WORLD CONSUMPTION OF PYRIDINE BASES IN 1991 3-2

3.3 1990 U.S. DEMAND OF SELECTED PYRIDINE BASES BY END-USE 3-3

3.4 PRODUCERS OF PYRIDINE BASES IN 1990 3-4

3.5 CYANURIC ACID PRODUCERS WORLDWIDE 3-6

3.6 DEMAND FOR CYANURIC ACID EQUIVALENTS IN 1990 3-7

3.7 U.S. DEMAND FOR CYANURIC ACID IN 1991 3-7

5.1 PYRIDINES AND PICOLINES PATENT SUMMARIES A-3

5.2 PRINCIPAL PRODUCTS FROM ALDEHYDES AND KETONES WITH AMMONIA 5-1

5.3 PYRIDINE AND 3-PICOLINE DESIGN BASES AND ASSUMPTIONS 5-4

5.4 PYRIDINE AND 3-PICOLINE FROM ACETALDEHYDE, FORMALDEHYDE, AND AMMONIA MAJOR EQUIPMENT 5-6

5.5 PYRIDINE AND 3-PICOLINE FROM ACETALDEHYDE, FORMALDEHYDE, AND AMMONIA UTILITIES SUMMARY 5-9

5.6 PYRIDINE AND 3-PICOLINE FROM ACETALDEHYDE, FORMALDEHYDE, AND AMMONIA STREAM FLOWS 5-10

5.7 WASTE STREAMS 5-16

5.8 PYRIDINE AND 3-PICOLINE FROM ACETALDEHYDE, FORMALDEHYDE, AND AMMONIA TOTAL CAPITAL INVESTMENT 5-18

5.9 PYRIDINE AND 3-PICOLINE FROM ACETALDEHYDE, FORMALDEHYDE, AND AMMONIA PRODUCTION COSTS 5-19
6.1 2-PICOLINE FROM ACRYLONITRILE AND ACETONE PATENT SUMMARY A-18
6.2 2-PICOLINE FROM ACRYLONITRILE AND ACETONE PATENT SUMMARY A-19
6.3 2-PICOLINE FROM ACRYLONITRILE AND ACETONE DESIGN BASES AND ASSUMPTIONS 6-3
6.4 2-PICOLINE FROM ACRYLONITRILE AND ACETONE MAJOR EQUIPMENT 6-5
6.5 2-PICOLINE FROM ACRYLONITRILE AND ACETONE UTILITIES SUMMARY 6-7
6.6 2-PICOLINE FROM ACRYLONITRILE AND ACETONE STREAM FLOWS 6-8
6.7 WASTE STREAMS 6-12
6.8 2-PICOLINE FROM ACRYLONITRILE AND ACETONE TOTAL CAPITAL INVESTMENT 6-13
6.9 2-PICOLINE FROM ACRYLONITRILE AND ACETONE CAPITAL INVESTMENT BY SECTION 6-14
6.10 2-PICOLINE FROM ACRYLONITRILE AND ACETONE PRODUCTION COSTS 6-15
7.1 CYANURIC ACID FROM UREA PATENT SUMMARY A-20
7.2 CYANURIC ACID BY PYROLYSIS OF UREA IN AN INERT SOLVENT PATENT SUMMARY A-26
7.3 PURIFICATION OF CRUDE CYANURIC ACID PATENT SUMMARY A-31
7.4 CYANURIC ACID BY PYROLYSIS OF UREA DESIGN BASES 7-3
7.5 CYANURIC ACID BY PYROLYSIS OF UREA MAJOR EQUIPMENT 7-5
7.6 CYANURIC ACID BY PYROLYSIS OF UREA UTILITIES SUMMARY 7-7
TABLES (Concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>CYANURIC ACID BY PYROLYSIS OF UREA STREAM FLOWS</td>
<td>7-8</td>
</tr>
<tr>
<td>7.8</td>
<td>CYANURIC ACID BY PYROLYSIS OF UREA TOTAL CAPITAL INVESTMENT</td>
<td>7-13</td>
</tr>
<tr>
<td>7.9</td>
<td>CYANURIC ACID BY PYROLYSIS OF UREA PRODUCTION COSTS</td>
<td>7-14</td>
</tr>
</tbody>
</table>