Abstract
Process Economics Program Report No. 208
ETHYLENE FROM METHANE
(January 1994)

This report evaluates two routes for the production of ethylene from methane: the direct synthesis based on the oxidative coupling of methane, and the less direct chemistry of converting methanol (which is derived from methane via synthesis gas) in the presence of an aluminophosphate molecular sieve catalyst. Our evaluations indicate that at the present state of development, the economics of both routes are unattractive when compared with the steam pyrolysis of hydrocarbons. We analyze the results of our evaluations to define the technical targets that must be attained for success.

We also present a comprehensive technical review that examines not only the two routes evaluated, but also some of the more promising alternative approaches, such as synthesis gas conversion via a modified Fischer-Tropsch process, ethanol synthesis by the homologation of methanol, and ethylene production via methyl chloride.

This report will be of interest to petrochemical companies that produce or consume ethylene and to energy-based companies (or equivalent government organizations in various countries) that have access to or control large resources of methane-rich natural gas.
CONTENTS

1 INTRODUCTION 1-1

2 SUMMARY 2-1

 TECHNICAL REVIEW 2-1
 Oxidative Coupling 2-1
 Methanol Conversion to Ethylene 2-3
 Modified Fischer-Tropsch (FT) Process 2-3
 Methanol Homologation 2-3
 Conversion via Methyl Chloride 2-4

 SRI’S PROCESS CONCEPTS 2-4
 Ethylene from Methane by Oxidative Coupling 2-4
 Ethylene from Methanol 2-5

 COST ESTIMATES 2-5

 SCOPE FOR COST REDUCTION 2-7
 Methanol Conversion 2-8
 Oxidative Coupling 2-8

3 TECHNICAL REVIEW 3-1

 OXIDATIVE COUPLING OF METHANE 3-3
 Catalysts 3-3
 Reactor Design 3-6
 Free Radical Promoters 3-7

 METHANOL CONVERSION TO LOWER OLEFINS 3-8
 Aluminosilicate Catalysts 3-8
 Aluminophosphate Catalysts 3-9

 MODIFIED FISCHER-TROPSCH CONVERSION 3-10

 METHANOL HOMOLOGATION 3-11

 CONVERSION VIA METHYL CHLORIDE 3-12
CONTENTS (Concluded)

4 ETHYLENE FROM METHANOL 4-1
 PROCESS DESCRIPTION 4-1
 Methanol Conversion (Section 100) 4-3
 Product Separation (Section 200) 4-3
 Refrigeration (Section 300) 4-4
 PROCESS DISCUSSION 4-13
 COST ESTIMATES 4-14

5 ETHYLENE FROM METHANE BY OXIDATIVE COUPLING 5-1
 PROCESS DESCRIPTION 5-1
 Olefins Synthesis and CO₂ Removal (Section 100) 5-4
 Product Separation (Section 200) 5-5
 Refrigeration (Section 300) 5-6
 Air Separation (Section 400) 5-6
 PROCESS DISCUSSION 5-16
 COST ESTIMATES 5-17

6 DISCUSSION OF THE ECONOMICS OF ETHYLENE FROM METHANE 6-1
 ETHYLENE FROM ETHANE BY CONVENTIONAL STEAM PYROLYSIS 6-1
 ETHYLENE FROM METHANOL 6-6
 Costs of Methanol from Natural Gas 6-6
 Integrated Methanol Production 6-10
 Scope for Reduction in Costs 6-17
 ETHYLENE FROM METHANE BY OXIDATIVE COUPLING OF METHANE 6-19
 Scope for Reduction in Costs 6-19
 CONCLUSIONS 6-21

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Block Diagram Showing Various Routes to Ethylene from Methane</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2</td>
<td>Performance of Various Oxidative Coupling Catalyst Systems Versus 100% Rule Line</td>
<td>3-4</td>
</tr>
<tr>
<td>4.1</td>
<td>Ethylene from Methanol Process Flow Diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>4.2</td>
<td>Ethylene from Methanol Steam Distribution Diagram</td>
<td>4-12</td>
</tr>
<tr>
<td>4.3</td>
<td>Ethylene from Methanol Ethylene Product Value as a Function of Methanol Price and Capacity</td>
<td>4-19</td>
</tr>
<tr>
<td>5.1</td>
<td>Ethylene from Methane by Oxidative Coupling Process Flow Diagram</td>
<td>E-5</td>
</tr>
<tr>
<td>5.2</td>
<td>Ethylene from Methane by Oxidative Coupling Steam Distribution Diagram</td>
<td>5-15</td>
</tr>
<tr>
<td>5.3</td>
<td>Ethylene from Methane by Oxidative Coupling Ethylene Product Value as a Function of Natural Gas Price and Capacity</td>
<td>5-24</td>
</tr>
<tr>
<td>6.1</td>
<td>Ethylene from Ethane Dependence of Return on Investment (ROI) Before Taxes on Ethylene Price</td>
<td>6-5</td>
</tr>
<tr>
<td>6.2</td>
<td>Methanol from Natural Gas Dependence of ROI on Methanol Price</td>
<td>6-9</td>
</tr>
<tr>
<td>6.3</td>
<td>Ethylene from Natural Gas Via Methanol Dependence of ROI on Ethylene Price</td>
<td>6-16</td>
</tr>
<tr>
<td>6.4</td>
<td>Ethylene from Methane by Oxidative Coupling TFC as a Function of Conversion and Selectivity</td>
<td>6-23</td>
</tr>
</tbody>
</table>
TABLES

2.1 Comparative Ethylene Production Costs 2-6
3.1 Ethylene from Methane Patent Summary A-3
4.1 Ethylene from Methanol Design Bases 4-2
4.2 Ethylene from Methanol Stream Flows 4-6
4.3 Ethylene from Methanol Major Equipment 4-8
4.4 Ethylene from Methanol Utilities Summary 4-10
4.5 Ethylene from Methanol Refrigerant Stream Flows 4-11
4.6 Ethylene from Methanol Total Capital Investment 4-15
4.7 Ethylene from Methanol Capital Investment by Section 4-16
4.8 Ethylene from Methanol Production Costs 4-17
4.9 Ethylene from Methanol Direct Costs by Section 4-20
5.1 Ethylene from Methane by Oxidative Coupling Design Bases 5-2
5.2 Ethylene from Methane by Oxidative Coupling Stream Flows 5-8
5.3 Ethylene from Methane by Oxidative Coupling Major Equipment 5-10
5.4 Ethylene from Methane by Oxidative Coupling Utilities Summary 5-13
5.5 Ethylene from Methane by Oxidative Coupling Refrigerant Stream Flows 5-14
TABLES (Concluded)

5.6 Ethylene from Methane by Oxidative Coupling
Total Capital Investment 5-19

5.7 Ethylene from Methane by Oxidative Coupling
Capital Investment by Section 5-20

5.8 Ethylene from Methane by Oxidative Coupling
Production Costs 5-22

5.9 Ethylene from Methane by Oxidative Coupling
Direct Costs by Section 5-25

6.1 Ethylene from Ethane by Conventional Steam Pyrolysis
Production Costs 6-2

6.2 Methanol from Natural Gas by the ICI Process
Production Costs 6-7

6.3 Crude Methanol from Natural Gas by the ICI Process
Production Costs 6-11

6.4 Ethylene from Natural Gas via Crude Methanol
Production Costs 6-14

6.5 Ethylene from Methanol
Economic Comparison Between Base and Idealized Cases 6-18

6.6 Ethylene by Methanol-Based and Oxidative Coupling Routes
Comparison of ROI-Price Relationships 6-20

6.7 Ethylene from Methane by Oxidative Coupling
Effect of Conversions/Selectivities on Production Costs 6-22
1 INTRODUCTION

The economic conversion of methane to ethylene and other similar higher value products is still a much desired research objective. Interest in processes for upgrading methane has been stimulated mainly by recent growth in natural gas reserves (particularly between 1980 and 1990), which has far outpaced that for crude oil. To some extent, the interest in methane-based routes to ethylene is also driven by possible future shortage of light paraffin feedstocks such as ethane, propane, and butanes, which cost less for producing ethylene than do heavier liquid feedstocks. The lighter paraffin feedstocks are neither as widely accessible nor as likely to be available in sufficient quantities to support the future growth in ethylene demand.

We previously examined the production of ethylene from methane in PEP Report 191, *Utilization of Remote Methane*, July 1989, and Report 146, *Bulk Chemicals from Synthesis Gas*, June 1982. The more recent report evaluates two routes to ethylene, one based on the oxidative coupling of methane and the other route via the zeolite catalyzed conversion of syngas-derived methanol. PEP Report 146 examines the more direct ethylene synthesis from a CO-H₂ (syngas) mixture, using a modified Fischer-Tropsch catalyst system along with an earlier version of a methanol-based process. In PEP Reviews we have evaluated various other routes to ethylene from methane, most notably in Reviews 82-2-1, *Ethylene from the Methane-chlorine Reaction System*, September 1982, and 80-1-3, *Ethylene from Methanol Homologation*, March 1981.

In this report, we reevaluate the production of ethylene from methanol and from the oxidative coupling of methane. In contrast to many alternative approaches, these two routes have evidenced significant technological advances. We also appraise the current status of the more promising alternatives in a technical review section of the report. These alternatives include the modified Fischer-Tropsch synthesis, methanol homologation, and the conversion via methyl chloride.

We analyze and discuss the results of our evaluations to identify the principal technical challenges that process developers currently face and define the research targets that they must accomplish to furnish a viable process. To quantify these targets, we use the production costs of ethylene by the steam pyrolysis of ethane as the reference yardstick.