Abstract

Process Economics Program Report No. 202
MONOMERS FOR HIGH-PERFORMANCE POLYMERS
(April 1991)

This report evaluates the manufacturing processes for four monomers that are used primarily to make liquid crystal polymers and polyethylene naphthalate: dimethyl-2,6-naphthalenedicarboxylate, p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, and 4,4i-dihydroxydiphenyl. The report contains preliminary process designs and cost estimates for manufacturing these monomers in a dedicated facility, and a process design and cost estimates for manufacturing three of them in a multiproduct shared facility.

This report includes summaries of pertinent patents for the four monomers mentioned above. Sections on the status of the industry and issues related to multiproduct manufacturing are also provided.
CONTENTS (Continued)

5 DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE (Concluded)
PROCESS DISCUSSION 5-24
 Selection of Design Patents 5-24
 Design Capacity 5-24
 Elimination of Impurities 5-24
 Complex Dissociation 5-25
 Materials of Construction 5-26
 Waste Streams 5-26
CAPITAL AND PRODUCTION COSTS 5-26
DISCUSSION OF PRODUCT VALUE 5-27

6 p-HYDROXYBENZOIC ACID AND 6-HYDROXY-2-NAPHTHOIC ACID 6-1
PROCESS REVIEW 6-1
PROCESS DESCRIPTION 6-1
 p-Hydroxybenzoic Acid Process 6-2
 6-Hydroxy-2-Naphthoic Acid Process 6-4
PROCESS DISCUSSION 6-22
 Selection of Design Patents 6-22
 Design Capacity 6-22
 Reactor Design 6-22
 Chemical Reactions 6-22
 Heat of Reaction 6-23
 Potassium Ion Recovery 6-23
 Elimination of Impurities 6-24
 Separators and Extractor 6-25
 Materials of Construction 6-25
 By-Products 6-25
CAPITAL AND PRODUCTION COSTS 6-26
DISCUSSION OF PRODUCT VALUE 6-26
7 4,4'-DIHYDROXYDIPHENYL FROM PHENOL 7-1
 PROCESS REVIEW 7-1
 PROCESS DESCRIPTION 7-1
 PROCESS DISCUSSION 7-15
 Choice of Design Patents 7-15
 Purity of Feeds 7-15
 Catalyst Prep Vessel V-102 7-15
 Aluminum Phenoxyde Catalyst 7-15
 Alkylation Reactors 7-15
 Catalyst Decomposition and Removal 7-15
 Recycle of Heavy Ends 7-16
 Oxidative Coupling Reactor 7-16
 Hydrogenation Reactor 7-16
 Recycle of Pd-on-C Catalyst 7-16
 Dealkylation Reactor 7-16
 Crystallization 7-16
 Process Building 7-16
 Waste Treatment 7-16
 CAPITAL AND PRODUCTION COSTS 7-18
 DISCUSSION OF PRODUCT VALUE 7-18

8 MULTIMONOMER PLANT 8-1
 PROCESS DESCRIPTION 8-1
 PROCESS DISCUSSION 8-29
 Selection of Design Patents 8-29
 Plant Versatility 8-29
 On-Stream Factor 8-30
 Design Capacity 8-30
 Materials of Construction 8-30
 Waste Treatment 8-30
 CAPITAL AND PRODUCTION COSTS 8-31
 DISCUSSION OF CAPITAL COSTS 8-31
 DISCUSSION OF PRODUCTION COSTS 8-32
CONTENTS (Concluded)

APPENDIX A: PATENT SUMMARY A-1

APPENDIX B: DESIGN AND COST BASES B-1
 DESIGN CONDITIONS B-3
 COST BASES B-3
 CAPITAL INVESTMENT B-3
 PRODUCTION COSTS B-4
 EFFECT OF OPERATING LEVEL ON PRODUCTION COSTS B-5

APPENDIX C: PHYSICAL PROPERTIES OF SELECTED MONOMERS C-1

APPENDIX D: EQUIPMENT SUPPLIERS D-1

APPENDIX E: CITED REFERENCES E-1

APPENDIX F: PATENT REFERENCES BY COMPANY F-1

APPENDIX G: PROCESS FLOW DIAGRAMS G-1
ILLUSTRATIONS

3.1 CONTINUOUS USE TEMPERATURE VERSUS MID-1989 U.S. LIST PRICES OF HIGH-PERFORMANCE POLYMERS 3-6
5.1 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE PROCESS FLOW DIAGRAM G-1
5.2 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE EFFECT OF PLANT CAPACITY ON CAPITAL RELATED COSTS 5-34
5.3 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE EFFECT OF 2-METHYLNAPHTHALENE PRICE ON PRODUCT VALUE 5-35
6.1 6-HYDROXYBENZOIC ACID FROM PHENOL PROCESS FLOW DIAGRAM G-7
6.2 6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL PROCESS FLOW DIAGRAM G-11
6.3 PRODUCT VALUE VERSUS PRODUCTION MIX 6-33
7.1 4,4i-DIHYDROXYDIPHENYL FROM PHENOL PROCESS FLOW DIAGRAM G-17
8.1 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE PROCESS FLOW DIAGRAM G-25
8.2 PHBA FROM PHENOL PROCESS FLOW DIAGRAM G-31
8.3 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE EFFECT OF PRODUCTION RATE ON PRODUCT VALUE 8-42
8.4 PHBA FROM PHENOL EFFECT OF PRODUCTION RATE ON PRODUCT VALUE 8-43
8.5 6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL EFFECT OF PRODUCTION RATE ON PRODUCT VALUE 8-44
TABLES

2.1 DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE MANUFACTURING COST SUMMARY 2-5
2.2 p-HYDROXYBENZOIC ACID MANUFACTURING COST SUMMARY 2-6
2.3 6-HYDROXY-2-NAPHTHOIC ACID MANUFACTURING COST SUMMARY 2-7
2.4 4,4i-DIHYDROXDIPHENYL MANUFACTURING COST SUMMARY 2-8
3.1 HIGH-PERFORMANCE POLYMERS 1989 CONSUMPTION 3-4
3.2 PRODUCERS OF MONOMERS FOR HIGH-PERFORMANCE POLYMERS 3-5
4.1 MONOMERS FOR HIGH-PERFORMANCE POLYMERS MULTIPURPOSE PRODUCTION FACILITIES 4-3
4.2 MONOMERS FOR HIGH-PERFORMANCE POLYMERS CUSTOMER CHEMICAL MANUFACTURERS 4-4
5.1 DIMETHYL 2,6-NAPHTHALENEDICARBOXYLATE PATENT SUMMARY A-3
5.2 2,6-NAPHTHALENEDICARBOXYLIC ACID PATENT SUMMARY A-9
5.3 ACYLATED NAPHTHALENE DERIVATIVES PATENT SUMMARY A-20
5.4 ALKYLATED NAPHTHALENE PATENT SUMMARY A-22
5.5 DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE (DM-2,6-NDC) 2-ACYL-6-METHYLNAPHTHALENE FROM 2-METHYLNAPHTHALENE SUMMARY OF REACTOR CONDITIONS 5-9
5.6 DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE (DM-2,6-NDC) 2,6-NAPHTHALENEDICARBOXYLIC ACID FROM 2-ACYL-6-METHYLNAPHTHALENE SUMMARY OF REACTOR CONDITIONS 5-10
5.7 DM-2,6-NDC FROM 2,6-NAPHTHALENEDICARBOXYLIC ACID SUMMARY OF REACTOR CONDITIONS 5-11
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE MAJOR EQUIPMENT</td>
<td>5-12</td>
</tr>
<tr>
<td>5.9</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE UTILITIES SUMMARY</td>
<td>5-15</td>
</tr>
<tr>
<td>5.10</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE STREAM FLOWS</td>
<td>5-16</td>
</tr>
<tr>
<td>5.11</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE TOTAL CAPITAL INVESTMENT</td>
<td>5-28</td>
</tr>
<tr>
<td>5.12</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE CAPITAL INVESTMENT BY SECTION</td>
<td>5-29</td>
</tr>
<tr>
<td>5.13</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE PRODUCTION COSTS</td>
<td>5-31</td>
</tr>
<tr>
<td>5.14</td>
<td>DM-2,6-NDC FROM 2-METHYLNAPHTHALENE DIRECT COSTS BY SECTION ($1,000/YR)</td>
<td>5-33</td>
</tr>
<tr>
<td>6.1</td>
<td>p-HYDROXYBENZOIC ACID PATENT SUMMARY</td>
<td>A-29</td>
</tr>
<tr>
<td>6.2</td>
<td>6-HYDROXY-2-NAPHTHOIC ACID PATENT SUMMARY</td>
<td>A-30</td>
</tr>
<tr>
<td>6.3</td>
<td>p-HYDROXYBENZOIC ACID FROM PHENOL SUMMARY OF REACTOR CONDITIONS</td>
<td>6-7</td>
</tr>
<tr>
<td>6.4</td>
<td>6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL SUMMARY OF REACTOR CONDITIONS</td>
<td>6-8</td>
</tr>
<tr>
<td>6.5</td>
<td>p-HYDROXYBENZOIC ACID FROM PHENOL; 6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL</td>
<td>6-9</td>
</tr>
<tr>
<td>6.6</td>
<td>p-HYDROXYBENZOIC ACID FROM PHENOL UTILITIES SUMMARY</td>
<td>6-12</td>
</tr>
<tr>
<td>6.7</td>
<td>6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL UTILITIES SUMMARY</td>
<td>6-13</td>
</tr>
<tr>
<td>6.8</td>
<td>p-HYDROXYBENZOIC ACID FROM PHENOL STREAM FLOWS</td>
<td>6-14</td>
</tr>
<tr>
<td>6.9</td>
<td>6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL STREAM FLOWS</td>
<td>6-17</td>
</tr>
</tbody>
</table>
TABLES (Continued)

6.10 p-HYDROXYBENZOIC ACID FROM PHENOL
 6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL
 TOTAL CAPITAL INVESTMENT 6-28

6.11 p-HYDROXYBENZOIC ACID FROM PHENOL
 PRODUCTION COSTS 6-29

6.12 6-HYDROXY-2-NAPHTHOIC ACID FROM b-NAPHTHOL
 PRODUCTION COSTS 6-31

7.1 4,4i-DIHYDROXYDIPHENYL
 PATENT SUMMARY A-32

7.2 4,4i-DIHYDROXYDIPHENYL FROM PHENOL
 ALKYLATION REACTOR CONDITIONS 7-7

7.3 4,4i-DIHYDROXYDIPHENYL FROM PHENOL
 OXIDATIVE COUPLING, HYDROGENATION,
 AND DEALKYLATION REACTOR CONDITIONS 7-8

7.4 4,4i-DIHYDROXYDIPHENYL FROM PHENOL
 MAJOR EQUIPMENT 7-9

7.5 4,4i-DIHYDROXYDIPHENYL FROM PHENOL
 UTILITIES SUMMARY 7-11

7.6 4,4i-DIHYDROXYDIPHENYL FROM PHENOL
 STREAM FLOWS 7-12

7.7 4,4i-DIHYDROXYDIPYHENYL FROM PHENOL
 TOTAL CAPITAL INVESTMENT 7-20

7.8 4,4i-DIHYDROXYDIPYHENYL FROM PHENOL
 CAPITAL INVESTMENT BY SECTION 7-21

7.9 4,4i-DIHYDROXYDIPYHENYL FROM PHENOL
 PRODUCTION COSTS 7-22

7.10 4,4i-DIHYDROXYDIPYHENYL FROM PHENOL
 DIRECT COSTS BY SECTION ($1,000/YR) 7-24

8.1 ACETYLATION OF PHENOL
 SUMMARY OF REACTOR CONDITIONS 8-2

8.2 ACETYLATION OF 4-HYDROXYACETOPHENONE
 SUMMARY OF REACTOR CONDITIONS 8-3
TABLES (Concluded)

8.3 OXIDATION OF 4-ACETOXYACETOPHENONE
SUMMARY OF REACTOR CONDITIONS 8-4

8.4 HYDROLYSIS OF 4-ACETOXYBENZOIC ACID
SUMMARY OF REACTOR CONDITIONS 8-5

8.5 MULTIMONOMER PLANT
MAJOR EQUIPMENT 8-8

8.6 MULTIMONOMER PLANT
UTILITIES SUMMARY 8-11

8.7 DM-2,6-NDC FROM 2-METHYLNAPHTHALENE
STREAM FLOWS 8-12

8.8 PHBA FROM PHENOL
STREAM FLOWS 8-21

8.9 MULTIMONOMER PLANT
TOTAL CAPITAL INVESTMENT 8-33

8.10 MULTIMONOMER PLANT
CAPITAL INVESTMENT BY SECTION 8-34

8.11 MULTIMONOMER PLANT
DM-2,6-NDC PRODUCTION COSTS 8-36

8.12 MULTIMONOMER PLANT
PHBA PRODUCTION COSTS 8-38

8.13 COMPARISON OF 6-HYDROXY-2-NAPHTHOIC ACID
PRODUCTION COSTS 8-40

8.14 COMPARISON OF DM-2,6-NDC CAPITAL COSTS 8-41

C.1 DIMETHYL-2,6-NAPHTHALENEDICARBOXYLATE (DM-2,6-NDC) C-3

C.2 2,6-NAPHTHALENEDICARBOXYLIC ACID (2,6-NDA) C-4

C.3 p-HYDROXYBENZOIC ACID (PHBA) C-5

C.4 6-HYDROXY-2-NAPHTHOIC ACID C-6

C.5 4,4i-DIHYDROXYDIPHENYL (p,pi-BIPHENOL) C-6