PEP Report 19G

Bimodal HDPE

Susan Bell, Sr. Principal Analyst

Abstract

With a worldwide demand of 40.1 million tpy, or 45% of the total demand for polyethylene in 2015, high-density polyethylene (HDPE) is the most widely used polyethylene. HDPE demand is expected to grow at an annual rate of 4.5% from 2015 to 2020. HDPE can be divided into three major types: (1) monomodal HDPE produced with Ziegler catalysts; (2) monomodal, broad molecular distribution HDPE produced with chrome catalysts; and (3) bimodal HDPE produced with Ziegler catalysts. Bimodal HDPE resins were pioneered in the 1980s by Oxychem (Nissan), Dow (Asahi), and Hoechst Celanese (Hoechst). ExxonMobil subsequently licensed bimodal slurry technology from Mitsui. These resins combine high-molecular-weight (HMW) and low-molecular-weight (LMW) resins to improve the balance of processability and mechanical properties. A large portion of the demand growth for HDPE has been in bimodal HDPE products. Two major markets for HDPE are pressure pipes (e.g., PE100) and blow molding. Bimodal HDPE products are most often used for these two markets.

In this report, we will discuss current bimodal HDPE production processes, including LyondellBasell’s Hostalen™ Advanced Cascade Process (ACP), Mitsui Chemical’s CX process, INEOS’ Innovene™ S, Univation’s UNIPOL™ PE process, Chevron Phillips Chemical’s MarTECH™ advanced dual loop (ADL) process, Borealis’ Borstar™ PE process, and LyondellBasell’s Hyperzone™ process. Features and differences among the processes are summarized. The status of HDPE process licensors and what they offer are compared. A brief market overview summarizes the global supply and demand and end use markets and demand drivers. The report presents the production economics for producing bimodal HDPE by:

- Cascade slurry CSTR—LyondellBasell’s Hostalen™ Advanced Cascade Process (ACP) and Mitsui Chemical’s CX process
- Cascade slurry loop reactors—INEOS’ Innovene™ S process
- Single reactor dual catalyst—Univation’s UNIPOL™ PE process with PRODIGY™ Bimodal Catalyst system
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2 Summary</td>
<td>12</td>
</tr>
<tr>
<td>Industrial aspects</td>
<td>12</td>
</tr>
<tr>
<td>Technical aspects</td>
<td>13</td>
</tr>
<tr>
<td>Process technology</td>
<td>13</td>
</tr>
<tr>
<td>LyondellBasell Hostalen™ Advanced Cascade Process (ACP)</td>
<td>14</td>
</tr>
<tr>
<td>Mitsui Chemicals CX PE process</td>
<td>15</td>
</tr>
<tr>
<td>INEOS Innoven™ S PE process</td>
<td>15</td>
</tr>
<tr>
<td>Univation UNIPOL™ PE process</td>
<td>15</td>
</tr>
<tr>
<td>Economic aspects</td>
<td>16</td>
</tr>
<tr>
<td>Capital cost comparison</td>
<td>16</td>
</tr>
<tr>
<td>Production cost comparison</td>
<td>18</td>
</tr>
<tr>
<td>3 Industry status</td>
<td>21</td>
</tr>
<tr>
<td>Molecular weight distribution of polyethylenes</td>
<td>21</td>
</tr>
<tr>
<td>Consumption and growth</td>
<td>22</td>
</tr>
<tr>
<td>Bimodal HDPE end use</td>
<td>25</td>
</tr>
<tr>
<td>High-performance films</td>
<td>25</td>
</tr>
<tr>
<td>HDPE pipes</td>
<td>25</td>
</tr>
<tr>
<td>Blow molding</td>
<td>26</td>
</tr>
<tr>
<td>HDPE price</td>
<td>27</td>
</tr>
<tr>
<td>HDPE production</td>
<td>27</td>
</tr>
<tr>
<td>Process technology</td>
<td>27</td>
</tr>
<tr>
<td>Process licensors and process owners</td>
<td>28</td>
</tr>
<tr>
<td>Catalyst producers</td>
<td>29</td>
</tr>
<tr>
<td>Commercial bimodal HDPE products</td>
<td>29</td>
</tr>
<tr>
<td>HDPE producers</td>
<td>30</td>
</tr>
<tr>
<td>4 Technology</td>
<td>36</td>
</tr>
<tr>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>Catalysts</td>
<td>36</td>
</tr>
<tr>
<td>Chromium-based catalysts</td>
<td>36</td>
</tr>
<tr>
<td>Ziegler catalysts</td>
<td>37</td>
</tr>
<tr>
<td>Single-site catalysts</td>
<td>38</td>
</tr>
<tr>
<td>Metallocene catalysts with bis-cyclopentadienyl or similar complexes</td>
<td>38</td>
</tr>
<tr>
<td>Constrained geometry catalysts</td>
<td>39</td>
</tr>
<tr>
<td>Catalysts for production of bimodal HDPE</td>
<td>39</td>
</tr>
<tr>
<td>Bimodal HDPE production by multiple reactors</td>
<td>39</td>
</tr>
<tr>
<td>Bimodal HDPE production with a single reactor</td>
<td>40</td>
</tr>
<tr>
<td>Chemistry</td>
<td>41</td>
</tr>
<tr>
<td>Polymer structure</td>
<td>42</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>42</td>
</tr>
<tr>
<td>Short-chain branching</td>
<td>42</td>
</tr>
<tr>
<td>Long-chain branching</td>
<td>43</td>
</tr>
<tr>
<td>Production processes</td>
<td>43</td>
</tr>
<tr>
<td>Gas-phase processes</td>
<td>44</td>
</tr>
<tr>
<td>Univation UNIPOL™ PE process</td>
<td>46</td>
</tr>
</tbody>
</table>
5 Bimodal HDPE by slurry CSTR processes 81
Introduction 81
LyondellBasell’s Hostalen™ Advanced Cascade Process (ACP) 81
Process description 81
Section 100—Polymerization 87
Section 200—Hexane and butene recovery 88
Section 300—Product finishing and bagging 88
Process discussion 88
Patent selection 88
Raw material 89
Catalyst system 89
Polymerization 90
Wax 90
Raw material consumption 90
Process safety 90
Materials of construction 91
Waste treatment 91
Cost estimates 91
Capital costs 91
Production costs 94
Mitsui Chemical’s CX process 97
Process description 97
Section 100—Polymerization 103
Section 200—Hexane recovery 104
Section 300—Product finishing and bagging 104
Process discussion 104
Raw material 104
Catalyst system 105
Polymerization 105
Wax 106
Raw material consumption 106
Process safety 106
Materials of construction 106
Waste treatment 106
Cost estimates 107
Capital costs 107
Production costs 110
6 Bimodal HDPE by slurry loop processes 113
Introduction 113
INEOS’ Innovene™ S process 113
Bimodal HDPE by gas-phase processes

Introduction

Univation Technologies’ UNIPOL™ PE process with PRODIGY™ Bimodal Catalyst system

Process description

Section 100—Polymerization

Section 200—Finishing section

Process discussion

General

Patent selection

Raw material

Catalyst system

Plant design capacity

Reactor space time yield

Bimodal HDPE production

Transferring of slurry from R-101 to R-102

Polymer discharged from last slurry polymerization reactor

Process safety

Materials of construction

Waste treatment

Cost estimates

Capital costs

Production costs

Appendix A—Patent summaries

Appendix B—Design and cost bases

Appendix C—Cited references

Appendix D—Patent references by company

Appendix E—Process flow diagrams
Tables

Table 2.1 Process licensors/technology owners 13
Table 2.2 Features of several processes to produce bimodal HDPE 14
Table 2.3 Capital intensity for world-scale plant 17
Table 2.4 Capital cost for 400 ktpy bimodal HDPE plant 17
Table 2.5 Production costs for world-scale HDPE plant 18
Table 2.6 Production costs for 400 ktpy bimodal HDPE plant 19
Table 3.1 Comparison of film properties of bimodal and unimodal HDPE 25
Table 3.2 PE pipe development 25
Table 3.3 PE pipe material designation 26
Table 3.4 PE100+ requirement 26
Table 3.5 Comparison of blow-molding properties of bimodal and unimodal HDPE 27
Table 3.6 HDPE resin price (dollars per metric ton) 27
Table 3.7 HDPE production capacity by type of processes—2015 27
Table 3.8 Process licensors/technology owners 28
Table 3.9 Several commercially available bimodal HDPE products 30
Table 3.10 HDPE production capacity by region—2015 30
Table 3.11 Leading global producers of HDPE—2015 31
Table 3.12 HDPE capacity by company and plant location—2015 31
Table 4.1 HDPE production capacity by type of processes—2015 43
Table 4.2 Typical operating conditions for different HDPE processes 44
Table 4.3 Process licensors/technology owners 44
Table 4.4 Gas-phase processes for HDPE production 45
Table 4.5 Product capability of Univation’s catalysts 49
Table 4.6 LyondellBasell’s polyethylene technologies 53
Table 4.7 Slurry loop processes for HDPE production 56
Table 4.8 Slurry CSTR processes for HDPE production 64
Table 4.9 LyondellBasell’s polyethylene technologies 65
Table 4.10 Solution processes for polyethylene production 72
Table 5.1 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Design bases and assumptions 82
Table 5.2 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Stream flows 83
Table 5.3 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Major equipment 85
Table 5.4 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Utilities summary 87
Table 5.5 Typical pipeline ethylene (high-purity) specifications 89
Table 5.6 Typical 1-butene specifications 89
Table 5.7 Summary of major waste streams 91
Table 5.8 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Total capital investment 93
Table 5.9 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Capital investment by section 94
Table 5.10 Bimodal HDPE production by LyondellBasell’s Hostalen™ ACP—Production costs 95
Table 5.11 Bimodal HDPE production by Mitsui Chemical’s CX process—Design bases and assumptions 98
Table 5.12 Bimodal HDPE production by Mitsui’s CX process—Stream flows 99
Table 5.13 Bimodal HDPE production by Mitsui’s CX process—Major equipment 101
Table 5.14 Bimodal HDPE production by Mitsui’s CX process—Utilities summary 103
Table 5.15 Typical pipeline ethylene (high-purity) specifications 104
Table 5.16 Typical 1-butene specifications 105
Table 5.17 Summary of major waste streams 107
Table 5.18 Bimodal HDPE production by Mitsui’s CX process—Total capital investment 109
Table 5.19 Bimodal HDPE production by Mitsui’s CX process—Capital investment by section 110
Table 5.20 Bimodal HDPE production by Mitsui’s CX process—Production costs 111
Table 6.1 Bimodal HDPE production by INEOS’ Innovene™ S process—Design bases and assumptions
Table 6.2 Bimodal HDPE production by INEOS’ Innovene™ S process—Stream flows
Table 6.3 Bimodal HDPE production by INEOS’ Innovene™ S process—Major equipment
Table 6.4 Bimodal HDPE production by INEOS’ Innovene™ S process—Utilities summary
Table 6.5 Typical pipeline ethylene (high-purity) specifications
Table 6.6 Typical 1-butene specifications
Table 6.7 Typical 1-hexene specifications
Table 6.8 Summary of major waste streams
Table 6.9 Bimodal HDPE production by INEOS’ Innovene™ S process—Total capital investment
Table 6.10 Bimodal HDPE production by INEOS’ Innovene™ S process—Capital investment by section
Table 6.11 Bimodal HDPE production by INEOS’ Innovene™ S process—Production costs
Table 7.1 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Design bases and assumptions
Table 7.2 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Stream flows
Table 7.3 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Major equipment
Table 7.4 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Utilities summary
Table 7.5 Typical pipeline ethylene (high-purity) specifications
Table 7.6 Typical 1-butene specifications
Table 7.7 Typical 1-hexene specifications
Table 7.8 Summary of major waste streams
Table 7.9 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Total capital investment
Table 7.10 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Capital investment by section
Table 7.11 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst—Production costs
Table 7.12 Bimodal HDPE production by Univation’s UNIPOL™ PE process using PRODIGY™ Bimodal Catalyst for 400 ktpy plant capacity—Production costs

Figures

Figure 2.1 World consumption of HDPE by end use—2015
Figure 2.2 Capital intensity for world-scale plant ($/ton bimodal HDPE product)
Figure 2.3 Capital cost for 400 ktpy plant ($ million)
Figure 2.4 Bimodal HDPE variable cost for 400 ktpy plant ($/ton)
Figure 2.5 Bimodal HDPE production cost for 400 ktpy plant ($/ton)
Figure 2.6 Bimodal HDPE production value for 400 ktpy plant ($/ton)
Figure 3.1 Molecular weight distributions of polyethylenes
Figure 3.2 HDPE demand by region—2015
Figure 3.3 World consumption of HDPE by end use—2015
Figure 3.4 Northeast Asia consumption of HDPE by end use—2015
Figure 3.5 West Europe consumption of HDPE by end use—2015
Figure 3.6 North America consumption of HDPE by end use—2015
Figure 4.1 Univation’s nonmetallocene ligand-based catalyst—bis(2-(trimethylphenylamido)ethyl) amine zirconium dibenzyl
Figure 4.2 Molecular weight distributions of polyethylenes
Figure 4.3 UNIPOL™ PE process simplified flow diagram
Figure 4.4 Innovene™ G PE process simplified flow diagram
Figure 4.5 Spherilene™ S process simplified flow diagram
Figure 4.6 LyondellBasell’s new multimodal HDPE process
Figure 4.7 Simplified flow diagram of CPChem’s MarTECH SL PE process
Figure 4.8 Simplified flow diagram of CPChem’s MarTECH ADL PE process
Figure 4.9 Dual catalyst system—Bridged metallocene catalyst components
Figure 4.10 Dual catalyst system—Hydrogen scavenging metallocene catalyst component
Figure 4.11 Chevron Phillips Chemical Company dual catalyst system
Figure 4.12 Simplified flow diagram of INEOS’ Innovene™ S PE process
Figure 4.13 Multimodal HDPE from Hostalen™ ACP
Figure 4.14 Simplified flow diagram of LyondellBasell Hostalen™ ACP
Figure 4.15 Comparison of HDPE blow-molding chain (L-ring drum)
Figure 4.16 Simplified flow diagram of Mitsui Chemicals’ CX process
Figure 4.17 Simplified flow diagram of Borealis’ Borstar™ 2G PE process
Figure 4.18 Simplified flow diagram of Dow Chemical’s DOWLEX™ PE process with two CSTRs
Figure 4.19 Simplified flow diagram of Dow Chemical’s DOWLEX™ PE process with two loop reactors
Figure 4.20 Simplified flow diagram of NOVA Chemical’s Advanced SCLAIRTECH™ PE process
Figure 4.21 Simplified flow diagram of Borealis’ Compact™ PE process
Figure 4.22 Simplified flow diagram of SK Innovation’s Nexlene™ PE process
Figure 5.1 Multimodal HDPE production based on LyondellBasell’s Hostalen™ Advanced Cascade Process—Section 100 (Polymerization)
Figure 5.1 Multimodal HDPE production based on LyondellBasell’s Hostalen™ Advanced Cascade Process—Section 200 (Hexane and butane recovery)
Figure 5.1 Multimodal HDPE production based on LyondellBasell’s Hostalen™ Advanced Cascade Process—Section 300 (Finishing)
Figure 5.2 Bimodal HDPE production based on Mitsui’s CX process—Section 100 (Polymerization)
Figure 5.2 Bimodal HDPE production based on Mitsui’s CX process—Section 200 (Hexane recovery)
Figure 5.2 Bimodal HDPE production based on Mitsui’s CX process—Section 300 (Finishing)
Figure 6.1 Bimodal HDPE production based on Innovene™ S process—Section 100 (Feed preparation and polymerization)
Figure 6.1 Bimodal HDPE production based on Innovene™ S process—Section 200 (Diluent and polymer recovery)
Figure 6.1 Bimodal HDPE production based on Innovene™ S process—Section 300 (Finishing)
Figure 7.1 Bimodal HDPE production based on Univation Technologies UNIPOL™ PE process with PRODIGY™ Bimodal Catalyst system—Section 100 (Polymerization)
Figure 7.1 Bimodal HDPE production based on Univation Technologies UNIPOL™ PE process with PRODIGY™ Bimodal Catalyst system—Section 200 (Product finishing and bagging)