Abstract
Process Economics Program Report 199B
PLASTICS RECYCLING TO LIQUIDS
(May 1996)

In industrialized countries, the business of collecting and processing postconsumer plastics continues to grow; increased amounts of plastics are being handled, and an ever greater variety of plastics are targeted for recycling. New methods have been introduced for identifying certain individual plastics and efficiently separating them from other materials.

Mixed plastics waste are often landfilled or incinerated. They are beginning to be used in steelmaking as a source of hydrogen and carbon monoxide reducing gas. Mixed plastics waste constitute a large stock of hydrocarbon raw materials that can instead be processed into new polymer products, chemicals, and fuels.

This report examines several processes for converting 110 million lb/yr (50,000 t/yr) of mixed plastics waste into liquid products. Our evaluation of the economics of these processes shows that if the liquid products are sold at market prices, a subsidy needs to be paid along with the delivery of the plastics waste feed. This subsidy-or tipping fee-takes the place of the avoided landfill disposal fee.

The processes that we describe and evaluate include a fluidized-bed pyrolysis process, a two-stage thermal/catalytic cracking process, and a hydrogenation process. In our evaluation, each of the first two processes includes a granulation and dehydrochlorination step (to deal with polyvinyl chloride in the feed), and the third process includes a granulation and depolymerization step. These additional steps increase the capital and operating costs. The processes could be more competitive with other recycling processes if simpler ways to pretreat the feed could be devised.

The three processes that produce a liquid are compared with a partial oxidation process to produce synthesis gas that we evaluated in PEP Report 199A: Plastics Reclamation and Recycling. The tipping fee required for the syngas process was lower than that for any of the processes evaluated in this report.

Intended to help companies assess the impact of these developments on their own operations, this report will be especially useful to companies that are seeking a niche that complements their own plastics operations. Companies already engaged in various segments of the plastics recycling business will find it useful for assessing competitive operations and expansion opportunities.
CONTENTS

GLOSSARY xix

1 INTRODUCTION 1-1

2 SUMMARY 2-1
 FEED COMPOSITION 2-1
 PYROLYSIS TO REFINERY OR STEAM CRACKER FEED 2-1
 CATALYTIC CRACKING TO LIQUID HYDROCARBONS 2-3
 HYDROGENATION TO SYNTHETIC CRUDE OIL 2-5

3 INDUSTRY STATUS 3-1
 EUROPE 3-1
 JAPAN 3-3
 UNITED STATES 3-4
 CANADA 3-5

4 CHEMISTRY 4-1
 HEAT OF PYROLYSIS 4-1
 HEAT OF DEPOLYMERIZATION 4-2

5 COMPOSITION OF PLASTICS WASTE FEED 5-1
 MAJOR VARIATIONS IN COMPOSITION OF WASTE 5-1
 Source 5-1
 Geographic Location 5-2
 Time 5-3
 EFFECTS OF COMPOSITION ON THE FINAL PRODUCT 5-4
 Polylefins 5-4
 Polystyrene 5-4
 Polyvinyl Chloride 5-4
 Polyethylene Terephthalate 5-6
 Other Plastics 5-6
 Nonplastics 5-6
 ASSUMED COMPOSITION OF PLASTICS WASTE FEED 5-6
6 PYROLYSIS/CrackING TO REFINERY OR STEAM CRACKER FEED 6-1

GENERAL 6-1

REVIEW OF PROCESS STEPS AND VARIABLES 6-3
 Size Reduction 6-4
 Sorting of Plastics 6-5
 Melting and Dehydrochlorination 6-6
 Pyrolysis/Thermal Cracking Reactors 6-7
 Stirred Tank Reactors 6-7
 Rotary Kilns 6-8
 Fluidized Bed 6-8
 Fluidized Solid 6-9
 Fluidizing Gas 6-9
 Pyrolysis Conditions 6-10
 Temperature 6-10
 Pressure 6-11
 Residence Time 6-12
 Polymer-Polymer Interaction 6-13
 Pyrolysis Products and Yields 6-14
 Polyolefins 6-14
 Polystyrene 6-15
 Polyvinyl Chloride 6-15
 Polyethylene Terephthalate 6-15
 Heat of Pyrolysis 6-15
 Acid Neutralization 6-16
 Recovery of Products 6-17
 Fractionation/Recycling to the Reactor 6-17
 Inerts/Solids Removal 6-17

PROCESS DESCRIPTION 6-18
 Feed Preparation (Section 100) 6-18
 Melting/Dehydrochlorination (Section 200) 6-19
 Fluidized-Bed Pyrolysis (Section 300) 6-19

PROCESS DISCUSSION 6-27
 Choice of Design Patents 6-27
 Feedstock Composition 6-27
CONTENTS (Continued)

6 PYROLYSIS/CrackiNG TO REFINERY OR STEAM CRACKER FEED (Continued)

PROCESS DISCUSSION (Concluded)

Plant Capacity 6-27
Stream Factor 6-28
Pyrolysis Product 6-28
Debaling 6-28
Metals Removal 6-28
Shredding/Granulation 6-29
Drying of the Plastic 6-29
Melting/Dehydrochlorination Reactor 6-29
Melting/Dehydrochlorination Conditions 6-30
Recovery of HCl 6-31
Polymer Filters 6-31
Atomizer/Fluidized-Bed Feeder 6-31
CaO Feed 6-32
Pyrolysis Temperature 6-32
Pyrolysis Pressure 6-32
Residence Time 6-32
Pyrolysis Selectivity 6-33
Overall Yields 6-34
High-Boiling Liquid Recycle 6-34
Fluidizing Gas 6-35
Fluidized Solid-Sand 6-35
Fluidized-Bed Reactor Design 6-35
Heat of Pyrolysis 6-36
Removal of Acids/Halogens 6-36
Removal of Fines 6-37
Noncombustibles/Metals/Coke/Residue 6-37
Recovery of Liquid Product 6-37
Materials of Construction 6-37
Waste Streams 6-37
CONTENTS (Continued)

6 PYROLYSIS/CRACKING TO REFINERY OR STEAM CRACKER FEED (Concluded)
 CAPITAL AND PRODUCTION COSTS 6-38
 General and Administrative, Sales, and Research Expenses 6-39
 Plant Location 6-40
 Effect of Plant Capacity on Product Value and Tipping Fee 6-40
 Effect of Yield on Product Value and Tipping Fee 6-40
 Effect of the Selling Price of Liquid Product on Tipping Fee 6-41
 Effect of Total Fixed Capital on Product Value and Tipping Fee 6-41
 Effect of Section 200 Reactor Cost on Product Value and Tipping Fee 6-41
 Effect of Return on Investment on Product Value and Tipping Fee 6-41
 Effect of Feed Composition on Product Value and Tipping Fee 6-42
 Removal of Feed Preparation Section 6-42
 Removal of Melting/Dehydrochlorination Section 6-42

CONCLUSIONS 6-52

7 CATALYTIC CRACKING OF PLASTICS TO LIQUID HYDROCARBONS 7-1
 GENERAL 7-1
 REVIEW OF PROCESS STEPS AND VARIABLES 7-1
 Size Reduction 7-2
 Sorting of Plastics 7-2
 Melting and Dehydrochlorination 7-2
 Catalyst Types 7-3
 Zeolites 7-3
 Solid Acid Catalysts 7-6
 Miscellaneous 7-7
 Effect of Catalysts on Reaction Conditions 7-8
 Yields from Catalytic Cracking 7-9
 Catalytic Cracking Reactors 7-9
 Fluidized Bed 7-9
 Stirred Tank 7-10
 Catalytic Cracking Methods 7-10
 Mixing with a Refinery Stream 7-10
 Mixing with a Catalyst 7-11
 Two-Stage Catalytic Cracking 7-12
7 CATALYTIC CRACKING OF PLASTICS TO LIQUID HYDROCARBONS (Continued)

PROCESS DESCRIPTION 7-14
Thermal and Catalytic Cracking (Section 300) 7-15

PROCESS DISCUSSION 7-22
Choice of Design Patents 7-22
Feedstock Composition 7-22
Plant Capacity 7-22
Stream Factor 7-22
Catalytic Cracking Product 7-23
Debaling 7-25
Metals Removal 7-25
Shredding/Granulation 7-25
Drying of the Plastic 7-25
Melting/Dehydrochlorination Reactor 7-25
Melting/Dehydrochlorination Conditions 7-25
Recovery of HCl 7-25
Polymer Filters 7-25
Mixing Vessel 7-25
Thermal Cracking Conditions 7-26
Temperature 7-26
Pressure 7-27
Residence Time 7-27
Thermal Cracking Heater 7-27
Catalytic Cracking Conditions 7-27
Temperature 7-28
Pressure 7-28
Choice of Catalyst 7-28
Conversion and Selectivity of Thermal and Catalytic Cracking Reaction 7-28
Overall Yields 7-29
High-Boiling Liquid Recycle 7-30
Heat of Pyrolysis 7-30
Removal of Acids/Halogens 7-30
Noncombustibles/Metals/Coke/Residue 7-31
CONTENTS (Continued)

7 CATALYTIC CRACKING OF PLASTICS TO LIQUID HYDROCARBONS (Concluded)

PROCESS DISCUSSION (Concluded)

- Recovery of Liquid Product 7-31
- Materials of Construction 7-31
- Waste Streams 7-31

CAPITAL AND PRODUCTION COSTS 7-32

- G&A, Sales, and Research Expenses 7-33
- Plant Location 7-34
- Effect of Plant Capacity on Product Value and Tipping Fee 7-34
- Effect of Yield on Product Value and Tipping Fee 7-34
- Effect of the Selling Price of Liquid Product on the Tipping Fee 7-35
- Effect of Catalyst Use on Product Value and Tipping Fee 7-35
- Effect of Total Fixed Capital on Product Value and Tipping Fee 7-35
- Effect of Return on Investment on Product Value and Tipping Fee 7-35
- Effect of Feed Composition on Product Value and Tipping Fee 7-36
- Removal of Feed Preparation Section 7-36
- Removal of Melting/Dehydrochlorination Section 7-36

8 HYDROGENATION OF PLASTICS WASTE TO SYNTHETIC CRUDE OIL 8-1

GENERAL 8-1

REVIEW OF PROCESS STEPS AND VARIABLES 8-1

- Size Reduction 8-2
- Sorting of Plastics 8-2
- Depolymerization 8-2
 - Reactors 8-3
 - Reaction Conditions 8-3
 - Temperature 8-4
 - Residence Time 8-4
 - Pressure 8-4
 - Atmosphere 8-4
 - Yields 8-4
 - Distribution of Chlorine 8-5
 - Solid Residue 8-6
 - Product Recovery 8-6
CONTENTS (Continued)

8 HYDROGENATION OF PLASTICS WASTE TO SYNTHETIC CRUDE OIL (Continued)

REVIEW OF PROCESS STEPS AND VARIABLES (Concluded)
- Hydrogenation 8-7
- Hydrotreating 8-8
- Hydrocracking 8-9
- Veba Combi Cracking Process 8-10

PROCESS DESCRIPTION 8-14
- Depolymerization (Section 200) 8-15
- Hydrogenation (Section 300) 8-18

PROCESS DISCUSSION 8-22
- Choice of Design Bases 8-22
- Feedstock Composition 8-22
- Plant Capacity 8-23
- Stream Factor 8-23
- Product 8-23
- Debaling 8-24
- Metals Removal 8-24
- Shredding/Granulation 8-24
- Drying of the Plastic 8-24
- Mixing Vessel 8-24
- Depolymerization Reactor 8-24
- Depolymerization Conditions 8-25
 - Temperature 8-25
 - Pressure 8-25
 - Residence Time 8-25
- Depolymerization Heater 8-26
- Recovery of HCl/Condensate 8-26
- Depolymerization Yields 8-26
- Distribution of Chlorine 8-27
- Hydrotreating of Condensate 8-27
- Hydrogenation 8-28
- Hydrogen Consumption 8-28
- Overall Yields 8-28
CONTENTS (Concluded)

8 HYDROGENATION OF PLASTICS WASTE TO SYNTHETIC CRUDE OIL (Concluded)

PROCESS DISCUSSION (Concluded)
- Heat of Depolymerization 8-29
- Noncombustibles/Metals/Coke/Residue 8-29
- Materials of Construction 8-29
- Waste Streams 8-30
- Plant Location 8-31

COST ESTIMATES 8-31
- Tipping Fees 8-33
- Effect of Plant Capacity 8-33
- Effect of Yields 8-34
- Effect of Total Fixed Capital 8-34
- Effect of Return on Investment 8-34
- Effect of Feed Composition 8-34
- Effect of G&A, Sales, and Research Expenses 8-35
- Effect of Residue Treatment Costs 8-35

9 COMPARISON OF PROCESSES 9-1

COST 9-1
- THE NATURE OF THE PRODUCT 9-3
- PRODUCT YIELDS 9-3
- PROCESS COMPLEXITY 9-3
- ROBUSTNESS OF THE PROCESS 9-4
- COMPARISON WITH A PROCESS FOR PARTIAL OXIDATION OF
 MIXED PLASTICS WASTE TO MAKE SYNGAS 9-4

APPENDIX A: PATENT SUMMARY TABLES A-1
APPENDIX B: DESIGN AND COST BASES B-1
APPENDIX C: CITED REFERENCES C-1
APPENDIX D: PATENT REFERENCES BY COMPANY D-1
APPENDIX E: PROCESS FLOW DIAGRAMS E-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Pyrolysis of Plastics Waste to Liquid Refinery or Steam Cracker Feed in a Fluidized Bed Process Flow Diagram</td>
<td>E-3</td>
</tr>
<tr>
<td>6.2</td>
<td>Pyrolysis of Plastics Waste to Refinery or Steam Cracker Feed Effect of Total Fixed Capital on Costs and Tipping Fees</td>
<td>6-50</td>
</tr>
<tr>
<td>6.3</td>
<td>Pyrolysis of Plastics Waste to Refinery or Steam Cracker Feed Effect of Return on Investment on Product Value and Tipping Fee</td>
<td>6-51</td>
</tr>
<tr>
<td>7.1</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Process Flow Diagram</td>
<td>E-5</td>
</tr>
<tr>
<td>7.2</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Effect of Total Fixed Capital on Costs and Tipping Fees</td>
<td>7-45</td>
</tr>
<tr>
<td>7.3</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Effect of Return on Investment on Product Value and Tipping Fee</td>
<td>7-46</td>
</tr>
<tr>
<td>8.1</td>
<td>Hydrogenation of Plastics Waste Process Flow Diagram</td>
<td>E-7</td>
</tr>
<tr>
<td>8.2</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Effect of Total Fixed Capital on Product Value and Tipping Fee</td>
<td>8-43</td>
</tr>
<tr>
<td>8.3</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Effect of Return on Investment on Product Value and Tipping Fee</td>
<td>8-44</td>
</tr>
</tbody>
</table>
TABLES

2.1 Plastics Recycling to Liquids
Summary of Economic Evaluations 2-4

4.1 Measured and Calculated Data for Energy Balance of
Pyrolysis of Plastics at 690°C in a Molten Salt Reactor 4-2

5.1 Types of Plastics Used 5-2

5.2 Comparison of Plastics Waste Composition in Different Regions 5-3

5.3 Composition of Municipal Plastics Waste in Japan 5-3

5.3 Products of Pyrolysis of Different Feeds in a Fluidized Bed 5-5

5.4 DSD/DKR Preliminary Specifications for Agglomerates 5-7

5.5 Composition of Feed 5-8

5.6 Composition of Plastics Waste Feed 5-8

5.7 Feed Composition Limits 5-9

6.1 FCC Micro-Activity Test Results on Feedstocks from
Plastics and Vacuum Gas Oil 6-2

6.2 Steam Microcracking of Naphtha/Wax Mixtures 6-3

6.3 Pyrolysis of Plastics
Patent Summary A-5

6.4 Pyrolysis of Plastics

6.5 Limits on the Chlorine Content of Feeds for Different Processes 6-5

6.6 Yields of Gas and Liquid from the Pyrolysis of
Polypropylene in a Fluidized Bed at Various Temperatures 6-11

6.7 Plastics Mixtures Tested in Pyrolysis 6-13

6.8 Liquid and Gas Yields for Blends of PP and HDPE 6-14

6.9 Measured and Calculated Data for Energy Balance of Pyrolysis of Plastics
Molten Salt Reactor at 690°C 6-16

6.10 Pyrolysis of Waste Plastics to Cracker Feeds
Design Bases and Assumptions 6-21
TABLES (Continued)

6.11 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Major Equipment 6-23

6.12 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Utilities Summary 6-25

6.13 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Stream Flows 6-26

6.14 Summary of Solid Waste Streams 6-38

6.15 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Total Capital Investment 6-43

6.16 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Capital Investment By Section 6-44

6.17 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Production Costs 6-45

6.18 Pyrolysis of Waste Plastics to Supplementary Liquid Refinery and/or Steam Cracker Feedstocks Direct Costs by Section 6-47

6.19 Tipping Fees Based on Various Costs for Plants with Selected Capacities 6-48

6.20 Effect of Liquid Yield on Plant Cash Cost, Plant Gate Cost, Production Cost, and Product Value 6-48

6.21 Effect of Liquid Yield on Tipping Fees 6-49

6.22 Pyrolysis/Cracking to Refinery/Cracker Feed Effect of Removing Sections on Total Fixed Capital and Various Costs 6-49

7.1 Catalytic Cracking of Plastics Patent Summary A-44

TABLES (Continued)

7.3 Effects of Various Catalysts on Thermal Degradation of PP at 400°C 7-3

7.4 Constraint Index Values 7-4

7.5 Effect of Pore Size on Product Produced in Catalytic Cracking of Plastics Waste 7-5

7.6 Catalytic Cracking of Plastics Waste: Effect of PVC, Catalyst, and Temperature on Liquid Yields 7-6

7.7 Catalytic Cracking of Plastics Waste: Composition of Oil Based on Catalyst Used 7-7

7.8 Effect of Catalyst on Activation Energy for Degradation of Plastics 7-8

7.9 Catalytic Cracking of Plastics Waste: Temperature Ranges for Two-Stage Catalytic Cracking 7-13

7.10 Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Design Bases and Assumptions 7-17

7.11 Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Major Equipment in Section 300 7-19

7.12 Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Utilities Summary 7-20

7.13 Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Stream Flows 7-21

7.14 Catalytic Cracking to Liquids: Boiling Points of the Two Recovered Liquid Fractions (°C) 7-23

7.15 Catalytic Cracking to Liquids: Component Analysis of Liquid Hydrocarbon Product 7-24

7.16 Catalytic Cracking to Liquids: Approximate Composition of Liquid Hydrocarbon Product 7-24

7.17 Catalytic Cracking to Liquids: Effect of Thermal Cracking Temperature on Product Properties and Yield 7-26

7.18 Summary of Solid Waste Streams 7-32

7.19 Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Total Capital Investment 7-38
TABLES (Continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Capital Investment by Section</td>
<td>7-39</td>
</tr>
<tr>
<td>7.21</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Production Costs</td>
<td>7-40</td>
</tr>
<tr>
<td>7.22</td>
<td>Catalytic Cracking of Plastics Waste to Liquid Hydrocarbons Direct Costs by Section</td>
<td>7-42</td>
</tr>
<tr>
<td>7.23</td>
<td>Catalytic Cracking to Liquids: Tipping Fees for Various Costs for Plants with Selected Capacities</td>
<td>7-43</td>
</tr>
<tr>
<td>7.24</td>
<td>Catalytic Cracking to Liquids: Effect of Liquid Yield on Plant Cash Cost, Plant Gate Cost, Production Cost, and Product Value</td>
<td>7-43</td>
</tr>
<tr>
<td>7.25</td>
<td>Catalytic Cracking to Liquids: Effect of Liquid Yield on Tipping Fees</td>
<td>7-44</td>
</tr>
<tr>
<td>7.26</td>
<td>Catalytic Cracking to Liquids: Effect of Removing Process Sections on Total Fixed Capital and Various Costs</td>
<td>7-47</td>
</tr>
<tr>
<td>8.1</td>
<td>Hydrogenation of Plastics Waste Patent Summary</td>
<td>A-58</td>
</tr>
<tr>
<td>8.2</td>
<td>Depolymerization Yields Under Mild Conditions</td>
<td>8-5</td>
</tr>
<tr>
<td>8.3</td>
<td>Distribution of Chlorine Under Mild Depolymerization Conditions</td>
<td>8-6</td>
</tr>
<tr>
<td>8.4</td>
<td>Heat Release from Hydrogenation</td>
<td>8-7</td>
</tr>
<tr>
<td>8.5</td>
<td>Typical Operating Conditions for Hydrotreating Various Streams</td>
<td>8-8</td>
</tr>
<tr>
<td>8.6</td>
<td>Plastics Waste Hydrogenation Range of Yields Depending on Gas-phase Reactor Conditions</td>
<td>8-11</td>
</tr>
<tr>
<td>8.7</td>
<td>Comparison of Characteristics of VCC Products and Arabian Light Crude Oil</td>
<td>8-12</td>
</tr>
<tr>
<td>8.8</td>
<td>Consumption of Hydrogen and Liquid Yields for Various Plastics in the VCC Process</td>
<td>8-13</td>
</tr>
<tr>
<td>8.9</td>
<td>Product Yields from Plastics Waste in the VCC Process</td>
<td>8-14</td>
</tr>
<tr>
<td>8.10</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Design Bases and Assumptions</td>
<td>8-16</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.11</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Major Equipment</td>
<td>8-19</td>
</tr>
<tr>
<td></td>
<td>for Section 200</td>
<td></td>
</tr>
<tr>
<td>8.12</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Utilities Summary</td>
<td>8-20</td>
</tr>
<tr>
<td>8.13</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Stream Flows</td>
<td>8-21</td>
</tr>
<tr>
<td>8.14</td>
<td>Summary of Solid Waste Streams</td>
<td>8-30</td>
</tr>
<tr>
<td>8.15</td>
<td>Synthetic Crude Oil by Hydrogenation of Vacuum Residue Production Costs</td>
<td>8-36</td>
</tr>
<tr>
<td>8.16</td>
<td>Synthetic Crude Oil by Hydrogenation of Vacuum Residue and Plastics Production Costs</td>
<td>8-38</td>
</tr>
<tr>
<td>8.17</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Total Capital</td>
<td>8-40</td>
</tr>
<tr>
<td></td>
<td>Investment</td>
<td></td>
</tr>
<tr>
<td>8.18</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Capital Investment</td>
<td>8-41</td>
</tr>
<tr>
<td></td>
<td>by Section</td>
<td></td>
</tr>
<tr>
<td>8.19</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Tipping Fees</td>
<td>8-42</td>
</tr>
<tr>
<td></td>
<td>for Various Costs for Plants with Selected Capacities</td>
<td></td>
</tr>
<tr>
<td>8.20</td>
<td>Hydrogenation of Plastics Waste to Synthetic Crude Oil Effect of Yield</td>
<td>8-42</td>
</tr>
<tr>
<td></td>
<td>on Tipping Fees</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Plastics Recycling to Liquids or Gases</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>Summary of Economic Evaluations</td>
<td></td>
</tr>
</tbody>
</table>